1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//
#include "CGCall.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ParameterAttributes.h"
using namespace clang;
using namespace CodeGen;
/***/
// FIXME: Use iterator and sidestep silly type array creation.
CGFunctionInfo::CGFunctionInfo(const FunctionTypeNoProto *FTNP)
: IsVariadic(true)
{
ArgTypes.push_back(FTNP->getResultType());
}
CGFunctionInfo::CGFunctionInfo(const FunctionTypeProto *FTP)
: IsVariadic(FTP->isVariadic())
{
ArgTypes.push_back(FTP->getResultType());
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTypes.push_back(FTP->getArgType(i));
}
// FIXME: Is there really any reason to have this still?
CGFunctionInfo::CGFunctionInfo(const FunctionDecl *FD)
{
const FunctionType *FTy = FD->getType()->getAsFunctionType();
const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(FTy);
ArgTypes.push_back(FTy->getResultType());
if (FTP) {
IsVariadic = FTP->isVariadic();
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTypes.push_back(FTP->getArgType(i));
} else {
IsVariadic = true;
}
}
CGFunctionInfo::CGFunctionInfo(const ObjCMethodDecl *MD,
const ASTContext &Context)
: IsVariadic(MD->isVariadic())
{
ArgTypes.push_back(MD->getResultType());
ArgTypes.push_back(MD->getSelfDecl()->getType());
ArgTypes.push_back(Context.getObjCSelType());
for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
e = MD->param_end(); i != e; ++i)
ArgTypes.push_back((*i)->getType());
}
ArgTypeIterator CGFunctionInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGFunctionInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
CGCallInfo::CGCallInfo(QualType _ResultType, const CallArgList &_Args) {
ArgTypes.push_back(_ResultType);
for (CallArgList::const_iterator i = _Args.begin(), e = _Args.end(); i!=e; ++i)
ArgTypes.push_back(i->second);
}
ArgTypeIterator CGCallInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGCallInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
/// ABIArgInfo - Helper class to encapsulate information about how a
/// specific C type should be passed to or returned from a function.
class ABIArgInfo {
public:
enum Kind {
Default,
StructRet, /// Only valid for aggregate return types.
Coerce, /// Only valid for aggregate return types, the argument
/// should be accessed by coercion to a provided type.
ByVal, /// Only valid for aggregate argument types. The
/// structure should be passed "byval" with the
/// specified alignment (0 indicates default
/// alignment).
Expand, /// Only valid for aggregate argument types. The
/// structure should be expanded into consecutive
/// arguments for its constituent fields. Currently
/// expand is only allowed on structures whose fields
/// are all scalar types or are themselves expandable
/// types.
KindFirst=Default, KindLast=Expand
};
private:
Kind TheKind;
const llvm::Type *TypeData;
unsigned UIntData;
ABIArgInfo(Kind K, const llvm::Type *TD=0,
unsigned UI=0) : TheKind(K),
TypeData(TD),
UIntData(0) {}
public:
static ABIArgInfo getDefault() {
return ABIArgInfo(Default);
}
static ABIArgInfo getStructRet() {
return ABIArgInfo(StructRet);
}
static ABIArgInfo getCoerce(const llvm::Type *T) {
assert(T->isSingleValueType() && "Can only coerce to simple types");
return ABIArgInfo(Coerce, T);
}
static ABIArgInfo getByVal(unsigned Alignment) {
return ABIArgInfo(ByVal, 0, Alignment);
}
static ABIArgInfo getExpand() {
return ABIArgInfo(Expand);
}
Kind getKind() const { return TheKind; }
bool isDefault() const { return TheKind == Default; }
bool isStructRet() const { return TheKind == StructRet; }
bool isCoerce() const { return TheKind == Coerce; }
bool isByVal() const { return TheKind == ByVal; }
bool isExpand() const { return TheKind == Expand; }
// Coerce accessors
const llvm::Type *getCoerceToType() const {
assert(TheKind == Coerce && "Invalid kind!");
return TypeData;
}
// ByVal accessors
unsigned getByValAlignment() const {
assert(TheKind == ByVal && "Invalid kind!");
return UIntData;
}
};
/***/
static ABIArgInfo classifyReturnType(QualType RetTy,
ASTContext &Context) {
assert(!RetTy->isArrayType() &&
"Array types cannot be passed directly.");
if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
uint64_t Size = Context.getTypeSize(RetTy);
if (Size == 8) {
return ABIArgInfo::getCoerce(llvm::Type::Int8Ty);
} else if (Size == 16) {
return ABIArgInfo::getCoerce(llvm::Type::Int16Ty);
} else if (Size == 32) {
return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
} else if (Size == 64) {
return ABIArgInfo::getCoerce(llvm::Type::Int64Ty);
} else {
return ABIArgInfo::getStructRet();
}
} else {
return ABIArgInfo::getDefault();
}
}
static ABIArgInfo classifyArgumentType(QualType Ty,
ASTContext &Context,
CodeGenTypes &Types) {
assert(!Ty->isArrayType() && "Array types cannot be passed directly.");
if (!Types.ConvertType(Ty)->isSingleValueType()) {
return ABIArgInfo::getByVal(0);
} else {
return ABIArgInfo::getDefault();
}
}
/***/
void CodeGenTypes::GetExpandedTypes(QualType Ty,
std::vector<const llvm::Type*> &ArgTys) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
const RecordDecl *RD = RT->getDecl();
assert(!RD->hasFlexibleArrayMember() &&
"Cannot expand structure with flexible array.");
for (RecordDecl::field_const_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
const FieldDecl *FD = *i;
assert(!FD->isBitField() &&
"Cannot expand structure with bit-field members.");
QualType FT = FD->getType();
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
GetExpandedTypes(FT, ArgTys);
} else {
ArgTys.push_back(ConvertType(FT));
}
}
}
llvm::Function::arg_iterator
CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
llvm::Function::arg_iterator AI) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
RecordDecl *RD = RT->getDecl();
assert(LV.isSimple() &&
"Unexpected non-simple lvalue during struct expansion.");
llvm::Value *Addr = LV.getAddress();
for (RecordDecl::field_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
FieldDecl *FD = *i;
QualType FT = FD->getType();
// FIXME: What are the right qualifiers here?
LValue LV = EmitLValueForField(Addr, FD, false, 0);
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
AI = ExpandTypeFromArgs(FT, LV, AI);
} else {
EmitStoreThroughLValue(RValue::get(AI), LV, FT);
++AI;
}
}
return AI;
}
void
CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
llvm::SmallVector<llvm::Value*, 16> &Args) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
RecordDecl *RD = RT->getDecl();
assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
llvm::Value *Addr = RV.getAggregateAddr();
for (RecordDecl::field_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
FieldDecl *FD = *i;
QualType FT = FD->getType();
// FIXME: What are the right qualifiers here?
LValue LV = EmitLValueForField(Addr, FD, false, 0);
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
} else {
RValue RV = EmitLoadOfLValue(LV, FT);
assert(RV.isScalar() &&
"Unexpected non-scalar rvalue during struct expansion.");
Args.push_back(RV.getScalarVal());
}
}
}
/***/
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGCallInfo &CI, bool IsVariadic) {
return GetFunctionType(CI.argtypes_begin(), CI.argtypes_end(), IsVariadic);
}
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
return GetFunctionType(FI.argtypes_begin(), FI.argtypes_end(), FI.isVariadic());
}
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(ArgTypeIterator begin, ArgTypeIterator end,
bool IsVariadic) {
std::vector<const llvm::Type*> ArgTys;
const llvm::Type *ResultType = 0;
QualType RetTy = *begin;
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
case ABIArgInfo::Default:
if (RetTy->isVoidType()) {
ResultType = llvm::Type::VoidTy;
} else {
ResultType = ConvertType(RetTy);
}
break;
case ABIArgInfo::StructRet: {
ResultType = llvm::Type::VoidTy;
const llvm::Type *STy = ConvertType(RetTy);
ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
break;
}
case ABIArgInfo::Coerce:
ResultType = RetAI.getCoerceToType();
break;
}
for (++begin; begin != end; ++begin) {
ABIArgInfo AI = classifyArgumentType(*begin, getContext(), *this);
const llvm::Type *Ty = ConvertType(*begin);
switch (AI.getKind()) {
case ABIArgInfo::Coerce:
case ABIArgInfo::StructRet:
assert(0 && "Invalid ABI kind for non-return argument");
case ABIArgInfo::ByVal:
// byval arguments are always on the stack, which is addr space #0.
ArgTys.push_back(llvm::PointerType::getUnqual(Ty));
assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled");
break;
case ABIArgInfo::Default:
ArgTys.push_back(Ty);
break;
case ABIArgInfo::Expand:
GetExpandedTypes(*begin, ArgTys);
break;
}
}
return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
}
bool CodeGenModule::ReturnTypeUsesSret(QualType RetTy) {
return classifyReturnType(RetTy, getContext()).isStructRet();
}
void CodeGenModule::ConstructParamAttrList(const Decl *TargetDecl,
ArgTypeIterator begin,
ArgTypeIterator end,
ParamAttrListType &PAL) {
unsigned FuncAttrs = 0;
if (TargetDecl) {
if (TargetDecl->getAttr<NoThrowAttr>())
FuncAttrs |= llvm::ParamAttr::NoUnwind;
if (TargetDecl->getAttr<NoReturnAttr>())
FuncAttrs |= llvm::ParamAttr::NoReturn;
}
QualType RetTy = *begin;
unsigned Index = 1;
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::Default:
if (RetTy->isPromotableIntegerType()) {
if (RetTy->isSignedIntegerType()) {
FuncAttrs |= llvm::ParamAttr::SExt;
} else if (RetTy->isUnsignedIntegerType()) {
FuncAttrs |= llvm::ParamAttr::ZExt;
}
}
break;
case ABIArgInfo::StructRet:
PAL.push_back(llvm::ParamAttrsWithIndex::get(Index,
llvm::ParamAttr::StructRet));
++Index;
break;
case ABIArgInfo::Coerce:
break;
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
if (FuncAttrs)
PAL.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs));
for (++begin; begin != end; ++begin) {
QualType ParamType = *begin;
unsigned ParamAttrs = 0;
ABIArgInfo AI = classifyArgumentType(ParamType, getContext(), getTypes());
switch (AI.getKind()) {
case ABIArgInfo::StructRet:
case ABIArgInfo::Coerce:
assert(0 && "Invalid ABI kind for non-return argument");
case ABIArgInfo::ByVal:
ParamAttrs |= llvm::ParamAttr::ByVal;
assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled");
break;
case ABIArgInfo::Default:
if (ParamType->isPromotableIntegerType()) {
if (ParamType->isSignedIntegerType()) {
ParamAttrs |= llvm::ParamAttr::SExt;
} else if (ParamType->isUnsignedIntegerType()) {
ParamAttrs |= llvm::ParamAttr::ZExt;
}
}
break;
case ABIArgInfo::Expand: {
std::vector<const llvm::Type*> Tys;
// FIXME: This is rather inefficient. Do we ever actually need
// to do anything here? The result should be just reconstructed
// on the other side, so extension should be a non-issue.
getTypes().GetExpandedTypes(ParamType, Tys);
Index += Tys.size();
continue;
}
}
if (ParamAttrs)
PAL.push_back(llvm::ParamAttrsWithIndex::get(Index, ParamAttrs));
++Index;
}
}
void CodeGenFunction::EmitFunctionProlog(llvm::Function *Fn,
QualType RetTy,
const FunctionArgList &Args) {
// Emit allocs for param decls. Give the LLVM Argument nodes names.
llvm::Function::arg_iterator AI = Fn->arg_begin();
// Name the struct return argument.
if (CGM.ReturnTypeUsesSret(RetTy)) {
AI->setName("agg.result");
++AI;
}
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
i != e; ++i) {
const VarDecl *Arg = i->first;
QualType Ty = i->second;
ABIArgInfo ArgI = classifyArgumentType(Ty, getContext(), CGM.getTypes());
switch (ArgI.getKind()) {
case ABIArgInfo::ByVal:
case ABIArgInfo::Default: {
assert(AI != Fn->arg_end() && "Argument mismatch!");
llvm::Value* V = AI;
if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
// This must be a promotion, for something like
// "void a(x) short x; {..."
V = EmitScalarConversion(V, Ty, Arg->getType());
}
EmitParmDecl(*Arg, V);
break;
}
case ABIArgInfo::Expand: {
// If this was structure was expand into multiple arguments then
// we need to create a temporary and reconstruct it from the
// arguments.
std::string Name(Arg->getName());
llvm::Value *Temp = CreateTempAlloca(ConvertType(Ty),
(Name + ".addr").c_str());
// FIXME: What are the right qualifiers here?
llvm::Function::arg_iterator End =
ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI);
EmitParmDecl(*Arg, Temp);
// Name the arguments used in expansion and increment AI.
unsigned Index = 0;
for (; AI != End; ++AI, ++Index)
AI->setName(Name + "." + llvm::utostr(Index));
continue;
}
case ABIArgInfo::Coerce:
case ABIArgInfo::StructRet:
assert(0 && "Invalid ABI kind for non-return argument");
}
++AI;
}
assert(AI == Fn->arg_end() && "Argument mismatch!");
}
void CodeGenFunction::EmitFunctionEpilog(QualType RetTy,
llvm::Value *ReturnValue) {
llvm::Value *RV = 0;
// Functions with no result always return void.
if (ReturnValue) {
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
break;
case ABIArgInfo::Default:
RV = Builder.CreateLoad(ReturnValue);
break;
case ABIArgInfo::Coerce: {
const llvm::Type *CoerceToPTy =
llvm::PointerType::getUnqual(RetAI.getCoerceToType());
RV = Builder.CreateLoad(Builder.CreateBitCast(ReturnValue, CoerceToPTy));
break;
}
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
}
if (RV) {
Builder.CreateRet(RV);
} else {
Builder.CreateRetVoid();
}
}
RValue CodeGenFunction::EmitCall(llvm::Value *Callee,
QualType RetTy,
const CallArgList &CallArgs) {
llvm::SmallVector<llvm::Value*, 16> Args;
// Handle struct-return functions by passing a pointer to the
// location that we would like to return into.
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
// Create a temporary alloca to hold the result of the call. :(
Args.push_back(CreateTempAlloca(ConvertType(RetTy)));
break;
case ABIArgInfo::Default:
case ABIArgInfo::Coerce:
break;
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
I != E; ++I) {
ABIArgInfo ArgInfo = classifyArgumentType(I->second, getContext(),
CGM.getTypes());
RValue RV = I->first;
switch (ArgInfo.getKind()) {
case ABIArgInfo::ByVal: // Default is byval
case ABIArgInfo::Default:
if (RV.isScalar()) {
Args.push_back(RV.getScalarVal());
} else if (RV.isComplex()) {
// Make a temporary alloca to pass the argument.
Args.push_back(CreateTempAlloca(ConvertType(I->second)));
StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
} else {
Args.push_back(RV.getAggregateAddr());
}
break;
case ABIArgInfo::StructRet:
case ABIArgInfo::Coerce:
assert(0 && "Invalid ABI kind for non-return argument");
break;
case ABIArgInfo::Expand:
ExpandTypeToArgs(I->second, RV, Args);
break;
}
}
llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
CGCallInfo CallInfo(RetTy, CallArgs);
// FIXME: Provide TargetDecl so nounwind, noreturn, etc, etc get set.
CodeGen::ParamAttrListType ParamAttrList;
CGM.ConstructParamAttrList(0,
CallInfo.argtypes_begin(), CallInfo.argtypes_end(),
ParamAttrList);
CI->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(),
ParamAttrList.size()));
if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
CI->setCallingConv(F->getCallingConv());
if (CI->getType() != llvm::Type::VoidTy)
CI->setName("call");
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
if (RetTy->isAnyComplexType())
return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
else
// Struct return.
return RValue::getAggregate(Args[0]);
case ABIArgInfo::Default:
return RValue::get(RetTy->isVoidType() ? 0 : CI);
case ABIArgInfo::Coerce: {
const llvm::Type *CoerceToPTy =
llvm::PointerType::getUnqual(RetAI.getCoerceToType());
llvm::Value *V = CreateTempAlloca(ConvertType(RetTy), "tmp");
Builder.CreateStore(CI, Builder.CreateBitCast(V, CoerceToPTy));
return RValue::getAggregate(V);
}
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
assert(0 && "Unhandled ABIArgInfo::Kind");
return RValue::get(0);
}
|