1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
//=== ASTRecordLayoutBuilder.cpp - Helper class for building record layouts ==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "RecordLayoutBuilder.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include <llvm/ADT/SmallSet.h>
#include <llvm/Support/MathExtras.h>
using namespace clang;
ASTRecordLayoutBuilder::ASTRecordLayoutBuilder(ASTContext &Ctx)
: Ctx(Ctx), Size(0), Alignment(8), StructPacking(0), NextOffset(0),
IsUnion(false), NonVirtualSize(0), NonVirtualAlignment(8) {}
void ASTRecordLayoutBuilder::LayoutVtable(const CXXRecordDecl *RD) {
// FIXME: audit indirect virtual bases
if (!RD->isPolymorphic() && !RD->getNumVBases())
return;
SelectPrimaryBase(RD);
if (PrimaryBase == 0) {
int AS = 0;
UpdateAlignment(Ctx.Target.getPointerAlign(AS));
Size += Ctx.Target.getPointerWidth(AS);
NextOffset = Size;
}
}
void
ASTRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
LayoutNonVirtualBase(Base);
}
}
}
// Helper routines related to the abi definition from:
// http://www.codesourcery.com/public/cxx-abi/abi.html
//
/// IsNearlyEmpty - Indicates when a class has a vtable pointer, but
/// no other data.
bool ASTRecordLayoutBuilder::IsNearlyEmpty(const CXXRecordDecl *RD) {
// FIXME: Audit the corners
if (!RD->isDynamicClass())
return false;
const ASTRecordLayout &BaseInfo = Ctx.getASTRecordLayout(RD);
if (BaseInfo.getNonVirtualSize() == Ctx.Target.getPointerWidth(0))
return true;
return false;
}
void ASTRecordLayoutBuilder::SelectPrimaryForBase(const CXXRecordDecl *RD,
llvm::SmallSet<const CXXRecordDecl*, 32> &IndirectPrimary) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
// Only bases with virtual bases participate in computing the
// indirect primary base classes.
// FIXME: audit indirect virtual bases
if (Base->getNumVBases() == 0)
return;
// FIXME: This information is recomputed a whole lot, cache it instead.
SelectPrimaryBase(Base);
IndirectPrimary.insert(PrimaryBase);
SelectPrimaryForBase(Base, IndirectPrimary);
}
}
}
/// SelectPrimaryBase - Selects the primary base for the given class and
/// records that with setPrimaryBase.
void ASTRecordLayoutBuilder::SelectPrimaryBase(const CXXRecordDecl *RD) {
// The primary base is the first non-virtual indirect or direct base class,
// if one exists.
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
if (Base->isDynamicClass()) {
setPrimaryBase(Base);
return;
}
}
}
// Otherwise, it is the first nearly empty virtual base that is not an
// indirect primary base class, if one exists.
// If we have no virtual bases at this point, bail out as the searching below
// is expensive.
// FIXME: audit indirect virtual bases
if (RD->getNumVBases() == 0) {
setPrimaryBase(0);
return;
}
// First, we compute all the primary bases for all of out direct and indirect
// non-virtual bases, and record all their primary base classes.
const CXXRecordDecl *FirstPrimary = 0;
llvm::SmallSet<const CXXRecordDecl*, 32> IndirectPrimary;
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
SelectPrimaryForBase(Base, IndirectPrimary);
}
}
// Then we can search for the first nearly empty virtual base itself.
// FIXME: audit indirect virtual bases
for (CXXRecordDecl::base_class_const_iterator i = RD->vbases_begin(),
e = RD->vbases_end(); i != e; ++i) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
if (IsNearlyEmpty(Base)) {
if (FirstPrimary==0)
FirstPrimary = Base;
if (!IndirectPrimary.count(Base)) {
setPrimaryBase(Base);
return;
}
}
}
// Otherwise if is the first nearly empty base, if one exists, otherwise
// there is no primary base class.
setPrimaryBase(FirstPrimary);
return;
}
void ASTRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *RD) {
const ASTRecordLayout &BaseInfo = Ctx.getASTRecordLayout(RD);
assert(BaseInfo.getDataSize() > 0 &&
"FIXME: Handle empty classes.");
unsigned BaseAlign = BaseInfo.getNonVirtualAlign();
uint64_t BaseSize = BaseInfo.getNonVirtualSize();
// Round up the current record size to the base's alignment boundary.
Size = (Size + (BaseAlign-1)) & ~(BaseAlign-1);
// Add base class offsets.
Bases.push_back(RD);
BaseOffsets.push_back(Size);
// Reserve space for this base.
Size += BaseSize;
// Remember the next available offset.
NextOffset = Size;
// Remember max struct/class alignment.
UpdateAlignment(BaseAlign);
}
void ASTRecordLayoutBuilder::Layout(const RecordDecl *D) {
IsUnion = D->isUnion();
if (const PackedAttr* PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
UpdateAlignment(AA->getAlignment());
// If this is a C++ class, lay out the nonvirtual bases.
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
LayoutVtable(RD);
LayoutNonVirtualBases(RD);
// FIXME: audit indirect virtual bases
assert (RD->getNumVBases() == 0
&& "FIXME: We don't support virtual bases yet!");
// FIXME: We need to layout the virtual bases in the complete object layout.
}
LayoutFields(D);
NonVirtualSize = Size;
NonVirtualAlignment = Alignment;
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout();
}
void ASTRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) {
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
const ASTRecordLayout &SL = Ctx.getASTObjCInterfaceLayout(SD);
UpdateAlignment(SL.getAlignment());
// We start laying out ivars not at the end of the superclass
// structure, but at the next byte following the last field.
Size = llvm::RoundUpToAlignment(SL.getDataSize(), 8);
NextOffset = Size;
}
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
UpdateAlignment(AA->getAlignment());
// Layout each ivar sequentially.
llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
Ctx.ShallowCollectObjCIvars(D, Ivars, Impl);
for (unsigned i = 0, e = Ivars.size(); i != e; ++i)
LayoutField(Ivars[i]);
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout();
}
void ASTRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (RecordDecl::field_iterator Field = D->field_begin(),
FieldEnd = D->field_end(); Field != FieldEnd; ++Field)
LayoutField(*Field);
}
void ASTRecordLayoutBuilder::LayoutField(const FieldDecl *D) {
unsigned FieldPacking = StructPacking;
uint64_t FieldOffset = IsUnion ? 0 : Size;
uint64_t FieldSize;
unsigned FieldAlign;
// FIXME: Should this override struct packing? Probably we want to
// take the minimum?
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
FieldPacking = PA->getAlignment();
if (const Expr *BitWidthExpr = D->getBitWidth()) {
// TODO: Need to check this algorithm on other targets!
// (tested on Linux-X86)
FieldSize = BitWidthExpr->EvaluateAsInt(Ctx).getZExtValue();
std::pair<uint64_t, unsigned> FieldInfo = Ctx.getTypeInfo(D->getType());
uint64_t TypeSize = FieldInfo.first;
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum.
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
FieldAlign = FieldInfo.second;
if (FieldPacking)
FieldAlign = std::min(FieldAlign, FieldPacking);
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Check if we need to add padding to give the field the correct
// alignment.
if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
// Padding members don't affect overall alignment
if (!D->getIdentifier())
FieldAlign = 1;
} else {
if (D->getType()->isIncompleteArrayType()) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
FieldSize = 0;
const ArrayType* ATy = Ctx.getAsArrayType(D->getType());
FieldAlign = Ctx.getTypeAlign(ATy->getElementType());
} else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
unsigned AS = RT->getPointeeType().getAddressSpace();
FieldSize = Ctx.Target.getPointerWidth(AS);
FieldAlign = Ctx.Target.getPointerAlign(AS);
} else {
std::pair<uint64_t, unsigned> FieldInfo = Ctx.getTypeInfo(D->getType());
FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
}
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum. Additionally, the packing alignment must be at least
// a byte for non-bitfields.
//
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
if (FieldPacking)
FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Round up the current record size to the field's alignment boundary.
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
}
// Place this field at the current location.
FieldOffsets.push_back(FieldOffset);
// Reserve space for this field.
if (IsUnion)
Size = std::max(Size, FieldSize);
else
Size = FieldOffset + FieldSize;
// Remember the next available offset.
NextOffset = Size;
// Remember max struct/class alignment.
UpdateAlignment(FieldAlign);
}
void ASTRecordLayoutBuilder::FinishLayout() {
// In C++, records cannot be of size 0.
if (Ctx.getLangOptions().CPlusPlus && Size == 0)
Size = 8;
// Finally, round the size of the record up to the alignment of the
// record itself.
Size = (Size + (Alignment-1)) & ~(Alignment-1);
}
void ASTRecordLayoutBuilder::UpdateAlignment(unsigned NewAlignment) {
if (NewAlignment <= Alignment)
return;
assert(llvm::isPowerOf2_32(NewAlignment && "Alignment not a power of 2"));
Alignment = NewAlignment;
}
const ASTRecordLayout *
ASTRecordLayoutBuilder::ComputeLayout(ASTContext &Ctx,
const RecordDecl *D) {
ASTRecordLayoutBuilder Builder(Ctx);
Builder.Layout(D);
if (!isa<CXXRecordDecl>(D))
return new ASTRecordLayout(Builder.Size, Builder.Alignment, Builder.Size,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size());
// FIXME: This is not always correct. See the part about bitfields at
// http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
// FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
bool IsPODForThePurposeOfLayout = cast<CXXRecordDecl>(D)->isPOD();
assert(Builder.Bases.size() == Builder.BaseOffsets.size() &&
"Base offsets vector must be same size as bases vector!");
// FIXME: This should be done in FinalizeLayout.
uint64_t DataSize =
IsPODForThePurposeOfLayout ? Builder.Size : Builder.NextOffset;
uint64_t NonVirtualSize =
IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;
return new ASTRecordLayout(Builder.Size, Builder.Alignment, DataSize,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size(),
NonVirtualSize,
Builder.NonVirtualAlignment,
Builder.PrimaryBase,
Builder.Bases.data(),
Builder.BaseOffsets.data(),
Builder.Bases.size());
}
const ASTRecordLayout *
ASTRecordLayoutBuilder::ComputeLayout(ASTContext &Ctx,
const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) {
ASTRecordLayoutBuilder Builder(Ctx);
Builder.Layout(D, Impl);
return new ASTRecordLayout(Builder.Size, Builder.Alignment,
Builder.NextOffset,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size());
}
|