summaryrefslogtreecommitdiffstats
path: root/clang/lib/AST/ExprConstant.cpp
blob: 08236836a701f243b2ab338ac47f281bc90d8e73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using llvm::APSInt;
using llvm::APFloat;

/// EvalInfo - This is a private struct used by the evaluator to capture
/// information about a subexpression as it is folded.  It retains information
/// about the AST context, but also maintains information about the folded
/// expression.
///
/// If an expression could be evaluated, it is still possible it is not a C
/// "integer constant expression" or constant expression.  If not, this struct
/// captures information about how and why not.
///
/// One bit of information passed *into* the request for constant folding
/// indicates whether the subexpression is "evaluated" or not according to C
/// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
/// evaluate the expression regardless of what the RHS is, but C only allows
/// certain things in certain situations.
struct EvalInfo {
  ASTContext &Ctx;
  
  /// isEvaluated - True if the subexpression is required to be evaluated, false
  /// if it is short-circuited (according to C rules).
  bool isEvaluated;
  
  /// ICEDiag - If the expression is unfoldable, then ICEDiag contains the 
  /// error diagnostic indicating why it is not foldable and DiagLoc indicates a
  /// caret position for the error.  If it is foldable, but the expression is
  /// not an integer constant expression, ICEDiag contains the extension
  /// diagnostic to emit which describes why it isn't an integer constant
  /// expression.  If this expression *is* an integer-constant-expr, then
  /// ICEDiag is zero.
  ///
  /// The caller can choose to emit this diagnostic or not, depending on whether
  /// they require an i-c-e or a constant or not.  DiagLoc indicates the caret
  /// position for the report.
  ///
  /// If ICEDiag is zero, then this expression is an i-c-e.  
  unsigned ICEDiag;
  SourceLocation DiagLoc;

  EvalInfo(ASTContext &ctx) : Ctx(ctx), isEvaluated(true), ICEDiag(0) {}
};


static bool EvaluateLValue(const Expr *E, APValue &Result, EvalInfo &Info);
static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info);
static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);

//===----------------------------------------------------------------------===//
// Misc utilities
//===----------------------------------------------------------------------===//

static bool HandleConversionToBool(Expr* E, bool& Result, EvalInfo &Info) {
  if (E->getType()->isIntegralType()) {
    APSInt IntResult;
    if (!EvaluateInteger(E, IntResult, Info))
      return false;
    Result = IntResult != 0;
    return true;
  } else if (E->getType()->isRealFloatingType()) {
    APFloat FloatResult(0.0);
    if (!EvaluateFloat(E, FloatResult, Info))
      return false;
    Result = !FloatResult.isZero();
    return true;
  } else if (E->getType()->isPointerType()) {
    APValue PointerResult;
    if (!EvaluatePointer(E, PointerResult, Info))
      return false;
    // FIXME: Is this accurate for all kinds of bases?  If not, what would
    // the check look like?
    Result = PointerResult.getLValueBase() || PointerResult.getLValueOffset();
    return true;
  }

  return false;
}

//===----------------------------------------------------------------------===//
// LValue Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN LValueExprEvaluator
  : public StmtVisitor<LValueExprEvaluator, APValue> {
  EvalInfo &Info;
public:
    
  LValueExprEvaluator(EvalInfo &info) : Info(info) {}

  APValue VisitStmt(Stmt *S) {
#if 0
    // FIXME: Remove this when we support more expressions.
    printf("Unhandled pointer statement\n");
    S->dump();  
#endif
    return APValue();
  }

  APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
  APValue VisitDeclRefExpr(DeclRefExpr *E) { return APValue(E, 0); }
  APValue VisitPredefinedExpr(PredefinedExpr *E) { return APValue(E, 0); }
  APValue VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
  APValue VisitMemberExpr(MemberExpr *E);
  APValue VisitStringLiteral(StringLiteral *E) { return APValue(E, 0); }
};
} // end anonymous namespace

static bool EvaluateLValue(const Expr* E, APValue& Result, EvalInfo &Info) {
  Result = LValueExprEvaluator(Info).Visit(const_cast<Expr*>(E));
  return Result.isLValue();
}

APValue LValueExprEvaluator::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
  if (E->isFileScope())
    return APValue(E, 0);
  return APValue();
}

APValue LValueExprEvaluator::VisitMemberExpr(MemberExpr *E) {
  APValue result;
  QualType Ty;
  if (E->isArrow()) {
    if (!EvaluatePointer(E->getBase(), result, Info))
      return APValue();
    Ty = E->getBase()->getType()->getAsPointerType()->getPointeeType();
  } else {
    result = Visit(E->getBase());
    if (result.isUninit())
      return APValue();
    Ty = E->getBase()->getType();
  }

  RecordDecl *RD = Ty->getAsRecordType()->getDecl();
  const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
  FieldDecl *FD = E->getMemberDecl();
    
  // FIXME: This is linear time.
  unsigned i = 0, e = 0;
  for (i = 0, e = RD->getNumMembers(); i != e; i++) {
    if (RD->getMember(i) == FD)
      break;
  }

  result.setLValue(result.getLValueBase(),
                   result.getLValueOffset() + RL.getFieldOffset(i) / 8);

  return result;
}


//===----------------------------------------------------------------------===//
// Pointer Evaluation
//===----------------------------------------------------------------------===//

namespace {
class VISIBILITY_HIDDEN PointerExprEvaluator
  : public StmtVisitor<PointerExprEvaluator, APValue> {
  EvalInfo &Info;
public:
    
  PointerExprEvaluator(EvalInfo &info) : Info(info) {}

  APValue VisitStmt(Stmt *S) {
    return APValue();
  }

  APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }

  APValue VisitBinaryOperator(const BinaryOperator *E);
  APValue VisitCastExpr(const CastExpr* E);
  APValue VisitUnaryOperator(const UnaryOperator *E);
  APValue VisitObjCStringLiteral(ObjCStringLiteral *E)
      { return APValue(E, 0); }
  APValue VisitConditionalOperator(ConditionalOperator *E);
};
} // end anonymous namespace

static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) {
  if (!E->getType()->isPointerType())
    return false;
  Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E));
  return Result.isLValue();
}

APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->getOpcode() != BinaryOperator::Add &&
      E->getOpcode() != BinaryOperator::Sub)
    return APValue();
  
  const Expr *PExp = E->getLHS();
  const Expr *IExp = E->getRHS();
  if (IExp->getType()->isPointerType())
    std::swap(PExp, IExp);
  
  APValue ResultLValue;
  if (!EvaluatePointer(PExp, ResultLValue, Info))
    return APValue();
  
  llvm::APSInt AdditionalOffset(32);
  if (!EvaluateInteger(IExp, AdditionalOffset, Info))
    return APValue();

  QualType PointeeType = PExp->getType()->getAsPointerType()->getPointeeType();
  uint64_t SizeOfPointee = Info.Ctx.getTypeSize(PointeeType) / 8;

  uint64_t Offset = ResultLValue.getLValueOffset();

  if (E->getOpcode() == BinaryOperator::Add)
    Offset += AdditionalOffset.getLimitedValue() * SizeOfPointee;
  else
    Offset -= AdditionalOffset.getLimitedValue() * SizeOfPointee;

  return APValue(ResultLValue.getLValueBase(), Offset);
}

APValue PointerExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  if (E->getOpcode() == UnaryOperator::Extension) {
    // FIXME: Deal with warnings?
    return Visit(E->getSubExpr());
  }

  if (E->getOpcode() == UnaryOperator::AddrOf) {
    APValue result;
    if (EvaluateLValue(E->getSubExpr(), result, Info))
      return result;
  }

  return APValue();
}
  

APValue PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
  const Expr* SubExpr = E->getSubExpr();

   // Check for pointer->pointer cast
  if (SubExpr->getType()->isPointerType()) {
    APValue Result;
    if (EvaluatePointer(SubExpr, Result, Info))
      return Result;
    return APValue();
  }
  
  if (SubExpr->getType()->isIntegralType()) {
    llvm::APSInt Result(32);
    if (EvaluateInteger(SubExpr, Result, Info)) {
      Result.extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType()));
      return APValue(0, Result.getZExtValue());
    }
  }

  if (SubExpr->getType()->isFunctionType() ||
      SubExpr->getType()->isArrayType()) {
    APValue Result;
    if (EvaluateLValue(SubExpr, Result, Info))
      return Result;
    return APValue();
  }

  //assert(0 && "Unhandled cast");
  return APValue();
}  

APValue PointerExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) {
  bool BoolResult;
  if (!HandleConversionToBool(E->getCond(), BoolResult, Info))
    return APValue();

  Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();

  APValue Result;
  if (EvaluatePointer(EvalExpr, Result, Info))
    return Result;
  return APValue();
}

//===----------------------------------------------------------------------===//
// Integer Evaluation
//===----------------------------------------------------------------------===//

namespace {
class VISIBILITY_HIDDEN IntExprEvaluator
  : public StmtVisitor<IntExprEvaluator, bool> {
  EvalInfo &Info;
  APSInt &Result;
public:
  IntExprEvaluator(EvalInfo &info, APSInt &result)
    : Info(info), Result(result) {}

  unsigned getIntTypeSizeInBits(QualType T) const {
    return (unsigned)Info.Ctx.getIntWidth(T);
  }
  
  bool Extension(SourceLocation L, diag::kind D) {
    Info.DiagLoc = L;
    Info.ICEDiag = D;
    return true;  // still a constant.
  }
    
  bool Error(SourceLocation L, diag::kind D, QualType ExprTy) {
    // If this is in an unevaluated portion of the subexpression, ignore the
    // error.
    if (!Info.isEvaluated) {
      // If error is ignored because the value isn't evaluated, get the real
      // type at least to prevent errors downstream.
      Result.zextOrTrunc(getIntTypeSizeInBits(ExprTy));
      Result.setIsUnsigned(ExprTy->isUnsignedIntegerType());
      return true;
    }
    
    // Take the first error.
    if (Info.ICEDiag == 0) {
      Info.DiagLoc = L;
      Info.ICEDiag = D;
    }
    return false;
  }
    
  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//
  
  bool VisitStmt(Stmt *) {
    assert(0 && "This should be called on integers, stmts are not integers");
    return false;
  }
    
  bool VisitExpr(Expr *E) {
    return Error(E->getLocStart(), diag::err_expr_not_constant, E->getType());
  }
  
  bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }

  bool VisitIntegerLiteral(const IntegerLiteral *E) {
    Result = E->getValue();
    Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
    return true;
  }
  bool VisitCharacterLiteral(const CharacterLiteral *E) {
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    Result = E->getValue();
    Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
    return true;
  }
  bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    // Per gcc docs "this built-in function ignores top level
    // qualifiers".  We need to use the canonical version to properly
    // be able to strip CRV qualifiers from the type.
    QualType T0 = Info.Ctx.getCanonicalType(E->getArgType1());
    QualType T1 = Info.Ctx.getCanonicalType(E->getArgType2());
    Result = Info.Ctx.typesAreCompatible(T0.getUnqualifiedType(), 
                                         T1.getUnqualifiedType());
    return true;
  }
  bool VisitDeclRefExpr(const DeclRefExpr *E);
  bool VisitCallExpr(const CallExpr *E);
  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitUnaryOperator(const UnaryOperator *E);

  bool VisitCastExpr(CastExpr* E) {
    return HandleCast(E->getLocStart(), E->getSubExpr(), E->getType());
  }
  bool VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);

private:
  bool HandleCast(SourceLocation CastLoc, Expr *SubExpr, QualType DestType);
};
} // end anonymous namespace

static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
  return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
}

bool IntExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
  // Enums are integer constant exprs.
  if (const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(E->getDecl())) {
    Result = D->getInitVal();
    return true;
  }
  
  // Otherwise, random variable references are not constants.
  return Error(E->getLocStart(), diag::err_expr_not_constant, E->getType());
}

/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
/// as GCC.
static int EvaluateBuiltinClassifyType(const CallExpr *E) {
  // The following enum mimics the values returned by GCC.
  enum gcc_type_class {
    no_type_class = -1,
    void_type_class, integer_type_class, char_type_class,
    enumeral_type_class, boolean_type_class,
    pointer_type_class, reference_type_class, offset_type_class,
    real_type_class, complex_type_class,
    function_type_class, method_type_class,
    record_type_class, union_type_class,
    array_type_class, string_type_class,
    lang_type_class
  };
  
  // If no argument was supplied, default to "no_type_class". This isn't 
  // ideal, however it is what gcc does.
  if (E->getNumArgs() == 0)
    return no_type_class;
  
  QualType ArgTy = E->getArg(0)->getType();
  if (ArgTy->isVoidType())
    return void_type_class;
  else if (ArgTy->isEnumeralType())
    return enumeral_type_class;
  else if (ArgTy->isBooleanType())
    return boolean_type_class;
  else if (ArgTy->isCharType())
    return string_type_class; // gcc doesn't appear to use char_type_class
  else if (ArgTy->isIntegerType())
    return integer_type_class;
  else if (ArgTy->isPointerType())
    return pointer_type_class;
  else if (ArgTy->isReferenceType())
    return reference_type_class;
  else if (ArgTy->isRealType())
    return real_type_class;
  else if (ArgTy->isComplexType())
    return complex_type_class;
  else if (ArgTy->isFunctionType())
    return function_type_class;
  else if (ArgTy->isStructureType())
    return record_type_class;
  else if (ArgTy->isUnionType())
    return union_type_class;
  else if (ArgTy->isArrayType())
    return array_type_class;
  else if (ArgTy->isUnionType())
    return union_type_class;
  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
    assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
  return -1;
}

bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
  Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
  
  switch (E->isBuiltinCall()) {
  default:
    return Error(E->getLocStart(), diag::err_expr_not_constant, E->getType());
  case Builtin::BI__builtin_classify_type:
    Result.setIsSigned(true);
    Result = EvaluateBuiltinClassifyType(E);
    return true;
    
  case Builtin::BI__builtin_constant_p: {
    // __builtin_constant_p always has one operand: it returns true if that
    // operand can be folded, false otherwise.
    APValue Res;
    Result = E->getArg(0)->tryEvaluate(Res, Info.Ctx);
    return true;
  }
  }
}

bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->getOpcode() == BinaryOperator::Comma) {
    // Evaluate the side that actually matters; this needs to be
    // handled specially because calling Visit() on the LHS can
    // have strange results when it doesn't have an integral type.
    Visit(E->getRHS());

    // Check for isEvaluated; the idea is that this might eventually
    // be useful for isICE and other similar uses that care about
    // whether a comma is evaluated.  This isn't really used yet, though,
    // and I'm not sure it really works as intended.
    if (!Info.isEvaluated)
      return true;

    return Extension(E->getOperatorLoc(), diag::ext_comma_in_constant_expr);
  }

  if (E->isLogicalOp()) {
    // These need to be handled specially because the operands aren't
    // necessarily integral
    bool bres;
    if (!HandleConversionToBool(E->getLHS(), bres, Info)) {
      // We can't evaluate the LHS; however, sometimes the result
      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
      if (HandleConversionToBool(E->getRHS(), bres, Info) &&
          bres == (E->getOpcode() == BinaryOperator::LOr)) {
        Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
        Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
        Result = bres;
        return true;
      }

      // Really can't evaluate
      return false;
    }

    bool bres2;
    if (HandleConversionToBool(E->getRHS(), bres2, Info)) {
      Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
      Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
      if (E->getOpcode() == BinaryOperator::LOr)
        Result = bres || bres2;
      else
        Result = bres && bres2;
      return true;
    }
    return false;
  }

  QualType LHSTy = E->getLHS()->getType();
  QualType RHSTy = E->getRHS()->getType();
  
  if (LHSTy->isRealFloatingType() &&
      RHSTy->isRealFloatingType()) {
    APFloat RHS(0.0), LHS(0.0);
    
    if (!EvaluateFloat(E->getRHS(), RHS, Info))
      return false;
    
    if (!EvaluateFloat(E->getLHS(), LHS, Info))
      return false;
    
    APFloat::cmpResult CR = LHS.compare(RHS);
    
    switch (E->getOpcode()) {
    default:
      assert(0 && "Invalid binary operator!");
    case BinaryOperator::LT:
      Result = CR == APFloat::cmpLessThan;
      break;
    case BinaryOperator::GT:
      Result = CR == APFloat::cmpGreaterThan;
      break;
    case BinaryOperator::LE:
      Result = CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual;
      break;
    case BinaryOperator::GE:
      Result = CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual;
      break;
    case BinaryOperator::EQ:
      Result = CR == APFloat::cmpEqual;
      break;
    case BinaryOperator::NE:
      Result = CR == APFloat::cmpGreaterThan || CR == APFloat::cmpLessThan;
      break;
    }
    
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
    return true;
  }
  
  if (!LHSTy->isIntegralType() ||
      !RHSTy->isIntegralType()) {
    // We can't continue from here for non-integral types, and they
    // could potentially confuse the following operations.
    // FIXME: Deal with EQ and friends.
    return false;
  }

  // The LHS of a constant expr is always evaluated and needed.
  llvm::APSInt RHS(32);
  if (!Visit(E->getLHS())) {
    return false; // error in subexpression.
  }

  // FIXME: Handle pointer subtraction

  // FIXME Maybe we want to succeed even where we can't evaluate the
  // right side of LAnd/LOr?
  // For example, see http://llvm.org/bugs/show_bug.cgi?id=2525 
  if (!EvaluateInteger(E->getRHS(), RHS, Info))
    return false;

  switch (E->getOpcode()) {
  default:
    return Error(E->getOperatorLoc(), diag::err_expr_not_constant,E->getType());
  case BinaryOperator::Mul: Result *= RHS; return true;
  case BinaryOperator::Add: Result += RHS; return true;
  case BinaryOperator::Sub: Result -= RHS; return true;
  case BinaryOperator::And: Result &= RHS; return true;
  case BinaryOperator::Xor: Result ^= RHS; return true;
  case BinaryOperator::Or:  Result |= RHS; return true;
  case BinaryOperator::Div:
    if (RHS == 0)
      return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero,
                   E->getType());
    Result /= RHS;
    break;
  case BinaryOperator::Rem:
    if (RHS == 0)
      return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero,
                   E->getType());
    Result %= RHS;
    break;
  case BinaryOperator::Shl:
    // FIXME: Warn about out of range shift amounts!
    Result <<= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
    break;
  case BinaryOperator::Shr:
    Result >>= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
    break;
      
  case BinaryOperator::LT:
    Result = Result < RHS;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  case BinaryOperator::GT:
    Result = Result > RHS;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  case BinaryOperator::LE:
    Result = Result <= RHS;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  case BinaryOperator::GE:
    Result = Result >= RHS;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  case BinaryOperator::EQ:
    Result = Result == RHS;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  case BinaryOperator::NE:
    Result = Result != RHS;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  case BinaryOperator::LAnd:
    Result = Result != 0 && RHS != 0;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  case BinaryOperator::LOr:
    Result = Result != 0 || RHS != 0;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    break;
  }

  Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
  return true;
}

/// VisitSizeAlignOfExpr - Evaluate a sizeof or alignof with a result as the
/// expression's type.
bool IntExprEvaluator::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
  QualType DstTy = E->getType();
  // Return the result in the right width.
  Result.zextOrTrunc(getIntTypeSizeInBits(DstTy));
  Result.setIsUnsigned(DstTy->isUnsignedIntegerType());

  QualType SrcTy = E->getTypeOfArgument();

  // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
  if (SrcTy->isVoidType()) {
    Result = 1;
    return true;
  }
  
  // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
  // FIXME: But alignof(vla) is!
  if (!SrcTy->isConstantSizeType()) {
    // FIXME: Should we attempt to evaluate this?
    return false;
  }

  bool isSizeOf = E->isSizeOf();
  
  // GCC extension: sizeof(function) = 1.
  if (SrcTy->isFunctionType()) {
    // FIXME: AlignOf shouldn't be unconditionally 4!
    Result = isSizeOf ? 1 : 4;
    return true;
  }
  
  // Get information about the size or align.
  unsigned CharSize = Info.Ctx.Target.getCharWidth();
  if (isSizeOf)
    Result = Info.Ctx.getTypeSize(SrcTy) / CharSize;
  else
    Result = Info.Ctx.getTypeAlign(SrcTy) / CharSize;
  return true;
}

bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  // Special case unary operators that do not need their subexpression
  // evaluated.  offsetof/sizeof/alignof are all special.
  if (E->isOffsetOfOp()) {
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    Result = E->evaluateOffsetOf(Info.Ctx);
    Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
    return true;
  }

  if (E->getOpcode() == UnaryOperator::LNot) {
    // LNot's operand isn't necessarily an integer, so we handle it specially.
    bool bres;
    if (!HandleConversionToBool(E->getSubExpr(), bres, Info))
      return false;
    Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
    Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
    Result = !bres;
    return true;
  }

  // Get the operand value into 'Result'.
  if (!Visit(E->getSubExpr()))
    return false;

  switch (E->getOpcode()) {
  default:
    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
    // See C99 6.6p3.
    return Error(E->getOperatorLoc(), diag::err_expr_not_constant,
                 E->getType());
  case UnaryOperator::Extension:
    // FIXME: Should extension allow i-c-e extension expressions in its scope?
    // If so, we could clear the diagnostic ID.
  case UnaryOperator::Plus:
    // The result is always just the subexpr. 
    break;
  case UnaryOperator::Minus:
    Result = -Result;
    break;
  case UnaryOperator::Not:
    Result = ~Result;
    break;
  }

  Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
  return true;
}
  
/// HandleCast - This is used to evaluate implicit or explicit casts where the
/// result type is integer.
bool IntExprEvaluator::HandleCast(SourceLocation CastLoc,
                                  Expr *SubExpr, QualType DestType) {
  unsigned DestWidth = getIntTypeSizeInBits(DestType);

  if (DestType->isBooleanType()) {
    bool BoolResult;
    if (!HandleConversionToBool(SubExpr, BoolResult, Info))
      return false;
    Result.zextOrTrunc(DestWidth);
    Result.setIsUnsigned(DestType->isUnsignedIntegerType());
    Result = BoolResult;
    return true;
  }

  // Handle simple integer->integer casts.
  if (SubExpr->getType()->isIntegralType()) {
    if (!Visit(SubExpr))
      return false;
    
    // Figure out if this is a truncate, extend or noop cast.
    // If the input is signed, do a sign extend, noop, or truncate.
    Result.extOrTrunc(DestWidth);
    Result.setIsUnsigned(DestType->isUnsignedIntegerType());
    return true;
  }
  
  // FIXME: Clean this up!
  if (SubExpr->getType()->isPointerType()) {
    APValue LV;
    if (!EvaluatePointer(SubExpr, LV, Info))
      return false;

    if (LV.getLValueBase())
      return false;

    Result.extOrTrunc(DestWidth);
    Result = LV.getLValueOffset();
    Result.setIsUnsigned(DestType->isUnsignedIntegerType());
    return true;
  }

  if (!SubExpr->getType()->isRealFloatingType())
    return Error(CastLoc, diag::err_expr_not_constant, DestType);

  APFloat F(0.0);
  if (!EvaluateFloat(SubExpr, F, Info))
    return Error(CastLoc, diag::err_expr_not_constant, DestType);
  
  // Determine whether we are converting to unsigned or signed.
  bool DestSigned = DestType->isSignedIntegerType();
  
  // FIXME: Warning for overflow.
  uint64_t Space[4];
  bool ignored;
  (void)F.convertToInteger(Space, DestWidth, DestSigned,
                           llvm::APFloat::rmTowardZero, &ignored);
  Result = llvm::APInt(DestWidth, 4, Space);
  Result.setIsUnsigned(!DestSigned);
  return true;
}

//===----------------------------------------------------------------------===//
// Float Evaluation
//===----------------------------------------------------------------------===//

namespace {
class VISIBILITY_HIDDEN FloatExprEvaluator
  : public StmtVisitor<FloatExprEvaluator, bool> {
  EvalInfo &Info;
  APFloat &Result;
public:
  FloatExprEvaluator(EvalInfo &info, APFloat &result)
    : Info(info), Result(result) {}

  bool VisitStmt(Stmt *S) {
    return false;
  }

  bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
  bool VisitCallExpr(const CallExpr *E);

  bool VisitUnaryOperator(const UnaryOperator *E);
  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitFloatingLiteral(const FloatingLiteral *E);
  bool VisitCastExpr(CastExpr *E);
  bool VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E);
};
} // end anonymous namespace

static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
  return FloatExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
}

bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
  switch (E->isBuiltinCall()) {
  default: return false;
  case Builtin::BI__builtin_huge_val:
  case Builtin::BI__builtin_huge_valf:
  case Builtin::BI__builtin_huge_vall:
  case Builtin::BI__builtin_inf:
  case Builtin::BI__builtin_inff:
  case Builtin::BI__builtin_infl: {
    const llvm::fltSemantics &Sem =
      Info.Ctx.getFloatTypeSemantics(E->getType());
    Result = llvm::APFloat::getInf(Sem);
    return true;
  }
      
  case Builtin::BI__builtin_nan:
  case Builtin::BI__builtin_nanf:
  case Builtin::BI__builtin_nanl:
    // If this is __builtin_nan("") turn this into a simple nan, otherwise we
    // can't constant fold it.
    if (const StringLiteral *S = 
        dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())) {
      if (!S->isWide() && S->getByteLength() == 0) { // empty string.
        const llvm::fltSemantics &Sem =
          Info.Ctx.getFloatTypeSemantics(E->getType());
        Result = llvm::APFloat::getNaN(Sem);
        return true;
      }
    }
    return false;

  case Builtin::BI__builtin_fabs:
  case Builtin::BI__builtin_fabsf:
  case Builtin::BI__builtin_fabsl:
    if (!EvaluateFloat(E->getArg(0), Result, Info))
      return false;
    
    if (Result.isNegative())
      Result.changeSign();
    return true;

  case Builtin::BI__builtin_copysign: 
  case Builtin::BI__builtin_copysignf: 
  case Builtin::BI__builtin_copysignl: {
    APFloat RHS(0.);
    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
        !EvaluateFloat(E->getArg(1), RHS, Info))
      return false;
    Result.copySign(RHS);
    return true;
  }
  }
}

bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  if (!EvaluateFloat(E->getSubExpr(), Result, Info))
    return false;

  switch (E->getOpcode()) {
  default: return false;
  case UnaryOperator::Plus: 
    return true;
  case UnaryOperator::Minus:
    Result.changeSign();
    return true;
  }
}

bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  // FIXME: Diagnostics?  I really don't understand how the warnings
  // and errors are supposed to work.
  APFloat RHS(0.0);
  if (!EvaluateFloat(E->getLHS(), Result, Info))
    return false;
  if (!EvaluateFloat(E->getRHS(), RHS, Info))
    return false;

  switch (E->getOpcode()) {
  default: return false;
  case BinaryOperator::Mul:
    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
    return true;
  case BinaryOperator::Add:
    Result.add(RHS, APFloat::rmNearestTiesToEven);
    return true;
  case BinaryOperator::Sub:
    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
    return true;
  case BinaryOperator::Div:
    Result.divide(RHS, APFloat::rmNearestTiesToEven);
    return true;
  case BinaryOperator::Rem:
    Result.mod(RHS, APFloat::rmNearestTiesToEven);
    return true;
  }
}

bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
  Result = E->getValue();
  return true;
}

bool FloatExprEvaluator::VisitCastExpr(CastExpr *E) {
  Expr* SubExpr = E->getSubExpr();
  const llvm::fltSemantics& destSemantics =
      Info.Ctx.getFloatTypeSemantics(E->getType());
  if (SubExpr->getType()->isIntegralType()) {
    APSInt IntResult;
    if (!EvaluateInteger(E, IntResult, Info))
      return false;
    Result = APFloat(destSemantics, 1);
    Result.convertFromAPInt(IntResult, IntResult.isSigned(),
                            APFloat::rmNearestTiesToEven);
    return true;
  }
  if (SubExpr->getType()->isRealFloatingType()) {
    if (!Visit(SubExpr))
      return false;
    bool ignored;
    Result.convert(destSemantics, APFloat::rmNearestTiesToEven, &ignored);
    return true;
  }

  return false;
}

bool FloatExprEvaluator::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) {
  Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
  return true;
}

//===----------------------------------------------------------------------===//
// Top level TryEvaluate.
//===----------------------------------------------------------------------===//

/// tryEvaluate - Return true if this is a constant which we can fold using
/// any crazy technique (that has nothing to do with language standards) that
/// we want to.  If this function returns true, it returns the folded constant
/// in Result.
bool Expr::tryEvaluate(APValue &Result, ASTContext &Ctx) const {
  EvalInfo Info(Ctx);
  if (getType()->isIntegerType()) {
    llvm::APSInt sInt(32);
    if (EvaluateInteger(this, sInt, Info)) {
      Result = APValue(sInt);
      return true;
    }
  } else if (getType()->isPointerType()) {
    if (EvaluatePointer(this, Result, Info)) {
      return true;
    }
  } else if (getType()->isRealFloatingType()) {
    llvm::APFloat f(0.0);
    if (EvaluateFloat(this, f, Info)) {
      Result = APValue(f);
      return true;
    }
  }
      
  return false;
}

/// isEvaluatable - Call tryEvaluate to see if this expression can be constant
/// folded, but discard the result.
bool Expr::isEvaluatable(ASTContext &Ctx) const {
  APValue V;
  return tryEvaluate(V, Ctx);
}
OpenPOWER on IntegriCloud