summaryrefslogtreecommitdiffstats
path: root/clang/lib/AST/ExprConstant.cpp
blob: 3a897ab34842dc9a2efb9fadee3b1eff3b34e492 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include <cstring>

using namespace clang;
using llvm::APSInt;
using llvm::APFloat;

/// EvalInfo - This is a private struct used by the evaluator to capture
/// information about a subexpression as it is folded.  It retains information
/// about the AST context, but also maintains information about the folded
/// expression.
///
/// If an expression could be evaluated, it is still possible it is not a C
/// "integer constant expression" or constant expression.  If not, this struct
/// captures information about how and why not.
///
/// One bit of information passed *into* the request for constant folding
/// indicates whether the subexpression is "evaluated" or not according to C
/// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
/// evaluate the expression regardless of what the RHS is, but C only allows
/// certain things in certain situations.
namespace {
  struct LValue;
  struct CallStackFrame;
  struct EvalInfo;

  QualType getType(APValue::LValueBase B) {
    if (!B) return QualType();
    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
      return D->getType();
    return B.get<const Expr*>()->getType();
  }

  /// Get an LValue path entry, which is known to not be an array index, as a
  /// field declaration.
  const FieldDecl *getAsField(APValue::LValuePathEntry E) {
    APValue::BaseOrMemberType Value;
    Value.setFromOpaqueValue(E.BaseOrMember);
    return dyn_cast<FieldDecl>(Value.getPointer());
  }
  /// Get an LValue path entry, which is known to not be an array index, as a
  /// base class declaration.
  const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
    APValue::BaseOrMemberType Value;
    Value.setFromOpaqueValue(E.BaseOrMember);
    return dyn_cast<CXXRecordDecl>(Value.getPointer());
  }
  /// Determine whether this LValue path entry for a base class names a virtual
  /// base class.
  bool isVirtualBaseClass(APValue::LValuePathEntry E) {
    APValue::BaseOrMemberType Value;
    Value.setFromOpaqueValue(E.BaseOrMember);
    return Value.getInt();
  }

  /// Determine whether the described subobject is an array element.
  static bool SubobjectIsArrayElement(QualType Base,
                                      ArrayRef<APValue::LValuePathEntry> Path) {
    bool IsArrayElement = false;
    const Type *T = Base.getTypePtr();
    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
      IsArrayElement = T && T->isArrayType();
      if (IsArrayElement)
        T = T->getBaseElementTypeUnsafe();
      else if (const FieldDecl *FD = getAsField(Path[I]))
        T = FD->getType().getTypePtr();
      else
        // Path[I] describes a base class.
        T = 0;
    }
    return IsArrayElement;
  }

  /// A path from a glvalue to a subobject of that glvalue.
  struct SubobjectDesignator {
    /// True if the subobject was named in a manner not supported by C++11. Such
    /// lvalues can still be folded, but they are not core constant expressions
    /// and we cannot perform lvalue-to-rvalue conversions on them.
    bool Invalid : 1;

    /// Whether this designates an array element.
    bool ArrayElement : 1;

    /// Whether this designates 'one past the end' of the current subobject.
    bool OnePastTheEnd : 1;

    typedef APValue::LValuePathEntry PathEntry;

    /// The entries on the path from the glvalue to the designated subobject.
    SmallVector<PathEntry, 8> Entries;

    SubobjectDesignator() :
      Invalid(false), ArrayElement(false), OnePastTheEnd(false) {}

    SubobjectDesignator(const APValue &V) :
      Invalid(!V.isLValue() || !V.hasLValuePath()), ArrayElement(false),
      OnePastTheEnd(false) {
      if (!Invalid) {
        ArrayRef<PathEntry> VEntries = V.getLValuePath();
        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
        if (V.getLValueBase())
          ArrayElement = SubobjectIsArrayElement(getType(V.getLValueBase()),
                                                 V.getLValuePath());
        else
          assert(V.getLValuePath().empty() &&"Null pointer with nonempty path");
        OnePastTheEnd = V.isLValueOnePastTheEnd();
      }
    }

    void setInvalid() {
      Invalid = true;
      Entries.clear();
    }
    /// Update this designator to refer to the given element within this array.
    void addIndex(uint64_t N) {
      if (Invalid) return;
      if (OnePastTheEnd) {
        setInvalid();
        return;
      }
      PathEntry Entry;
      Entry.ArrayIndex = N;
      Entries.push_back(Entry);
      ArrayElement = true;
    }
    /// Update this designator to refer to the given base or member of this
    /// object.
    void addDecl(const Decl *D, bool Virtual = false) {
      if (Invalid) return;
      if (OnePastTheEnd) {
        setInvalid();
        return;
      }
      PathEntry Entry;
      APValue::BaseOrMemberType Value(D, Virtual);
      Entry.BaseOrMember = Value.getOpaqueValue();
      Entries.push_back(Entry);
      ArrayElement = false;
    }
    /// Add N to the address of this subobject.
    void adjustIndex(uint64_t N) {
      if (Invalid) return;
      if (ArrayElement) {
        // FIXME: Make sure the index stays within bounds, or one past the end.
        Entries.back().ArrayIndex += N;
        return;
      }
      if (OnePastTheEnd && N == (uint64_t)-1)
        OnePastTheEnd = false;
      else if (!OnePastTheEnd && N == 1)
        OnePastTheEnd = true;
      else if (N != 0)
        setInvalid();
    }
  };

  /// A core constant value. This can be the value of any constant expression,
  /// or a pointer or reference to a non-static object or function parameter.
  ///
  /// For an LValue, the base and offset are stored in the APValue subobject,
  /// but the other information is stored in the SubobjectDesignator. For all
  /// other value kinds, the value is stored directly in the APValue subobject.
  class CCValue : public APValue {
    typedef llvm::APSInt APSInt;
    typedef llvm::APFloat APFloat;
    /// If the value is a reference or pointer into a parameter or temporary,
    /// this is the corresponding call stack frame.
    CallStackFrame *CallFrame;
    /// If the value is a reference or pointer, this is a description of how the
    /// subobject was specified.
    SubobjectDesignator Designator;
  public:
    struct GlobalValue {};

    CCValue() {}
    explicit CCValue(const APSInt &I) : APValue(I) {}
    explicit CCValue(const APFloat &F) : APValue(F) {}
    CCValue(const APValue *E, unsigned N) : APValue(E, N) {}
    CCValue(const APSInt &R, const APSInt &I) : APValue(R, I) {}
    CCValue(const APFloat &R, const APFloat &I) : APValue(R, I) {}
    CCValue(const CCValue &V) : APValue(V), CallFrame(V.CallFrame) {}
    CCValue(LValueBase B, const CharUnits &O, CallStackFrame *F,
            const SubobjectDesignator &D) :
      APValue(B, O, APValue::NoLValuePath()), CallFrame(F), Designator(D) {}
    CCValue(const APValue &V, GlobalValue) :
      APValue(V), CallFrame(0), Designator(V) {}
    CCValue(const ValueDecl *D, bool IsDerivedMember,
            ArrayRef<const CXXRecordDecl*> Path) :
      APValue(D, IsDerivedMember, Path) {}

    CallStackFrame *getLValueFrame() const {
      assert(getKind() == LValue);
      return CallFrame;
    }
    SubobjectDesignator &getLValueDesignator() {
      assert(getKind() == LValue);
      return Designator;
    }
    const SubobjectDesignator &getLValueDesignator() const {
      return const_cast<CCValue*>(this)->getLValueDesignator();
    }
  };

  /// A stack frame in the constexpr call stack.
  struct CallStackFrame {
    EvalInfo &Info;

    /// Parent - The caller of this stack frame.
    CallStackFrame *Caller;

    /// This - The binding for the this pointer in this call, if any.
    const LValue *This;

    /// ParmBindings - Parameter bindings for this function call, indexed by
    /// parameters' function scope indices.
    const CCValue *Arguments;

    typedef llvm::DenseMap<const Expr*, CCValue> MapTy;
    typedef MapTy::const_iterator temp_iterator;
    /// Temporaries - Temporary lvalues materialized within this stack frame.
    MapTy Temporaries;

    CallStackFrame(EvalInfo &Info, const LValue *This,
                   const CCValue *Arguments);
    ~CallStackFrame();
  };

  /// A partial diagnostic which we might know in advance that we are not going
  /// to emit.
  class OptionalDiagnostic {
    PartialDiagnostic *Diag;

  public:
    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}

    template<typename T>
    OptionalDiagnostic &operator<<(const T &v) {
      if (Diag)
        *Diag << v;
      return *this;
    }
  };

  struct EvalInfo {
    ASTContext &Ctx;

    /// EvalStatus - Contains information about the evaluation.
    Expr::EvalStatus &EvalStatus;

    /// CurrentCall - The top of the constexpr call stack.
    CallStackFrame *CurrentCall;

    /// CallStackDepth - The number of calls in the call stack right now.
    unsigned CallStackDepth;

    typedef llvm::DenseMap<const OpaqueValueExpr*, CCValue> MapTy;
    /// OpaqueValues - Values used as the common expression in a
    /// BinaryConditionalOperator.
    MapTy OpaqueValues;

    /// BottomFrame - The frame in which evaluation started. This must be
    /// initialized last.
    CallStackFrame BottomFrame;

    /// EvaluatingDecl - This is the declaration whose initializer is being
    /// evaluated, if any.
    const VarDecl *EvaluatingDecl;

    /// EvaluatingDeclValue - This is the value being constructed for the
    /// declaration whose initializer is being evaluated, if any.
    APValue *EvaluatingDeclValue;


    EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
        CallStackDepth(0), BottomFrame(*this, 0, 0), EvaluatingDecl(0),
        EvaluatingDeclValue(0) {}

    const CCValue *getOpaqueValue(const OpaqueValueExpr *e) const {
      MapTy::const_iterator i = OpaqueValues.find(e);
      if (i == OpaqueValues.end()) return 0;
      return &i->second;
    }

    void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
      EvaluatingDecl = VD;
      EvaluatingDeclValue = &Value;
    }

    const LangOptions &getLangOpts() const { return Ctx.getLangOptions(); }

    bool atCallLimit() const {
      return CallStackDepth > getLangOpts().ConstexprCallDepth;
    }

    /// Diagnose that the evaluation cannot be folded.
    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId) {
      // If we have a prior diagnostic, it will be noting that the expression
      // isn't a constant expression. This diagnostic is more important.
      // FIXME: We might want to show both diagnostics to the user.
      if (EvalStatus.Diag) {
        EvalStatus.Diag->clear();
        EvalStatus.Diag->reserve(1);
        PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
        EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
        // FIXME: Add a call stack for constexpr evaluation.
        return OptionalDiagnostic(&EvalStatus.Diag->back().second);
      }
      return OptionalDiagnostic();
    }

    /// Diagnose that the evaluation does not produce a C++11 core constant
    /// expression.
    OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId) {
      // Don't override a previous diagnostic.
      if (!EvalStatus.Diag || !EvalStatus.Diag->empty())
        return OptionalDiagnostic();
      return Diag(Loc, DiagId);
    }
  };

  CallStackFrame::CallStackFrame(EvalInfo &Info, const LValue *This,
                                 const CCValue *Arguments)
      : Info(Info), Caller(Info.CurrentCall), This(This), Arguments(Arguments) {
    Info.CurrentCall = this;
    ++Info.CallStackDepth;
  }

  CallStackFrame::~CallStackFrame() {
    assert(Info.CurrentCall == this && "calls retired out of order");
    --Info.CallStackDepth;
    Info.CurrentCall = Caller;
  }

  struct ComplexValue {
  private:
    bool IsInt;

  public:
    APSInt IntReal, IntImag;
    APFloat FloatReal, FloatImag;

    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}

    void makeComplexFloat() { IsInt = false; }
    bool isComplexFloat() const { return !IsInt; }
    APFloat &getComplexFloatReal() { return FloatReal; }
    APFloat &getComplexFloatImag() { return FloatImag; }

    void makeComplexInt() { IsInt = true; }
    bool isComplexInt() const { return IsInt; }
    APSInt &getComplexIntReal() { return IntReal; }
    APSInt &getComplexIntImag() { return IntImag; }

    void moveInto(CCValue &v) const {
      if (isComplexFloat())
        v = CCValue(FloatReal, FloatImag);
      else
        v = CCValue(IntReal, IntImag);
    }
    void setFrom(const CCValue &v) {
      assert(v.isComplexFloat() || v.isComplexInt());
      if (v.isComplexFloat()) {
        makeComplexFloat();
        FloatReal = v.getComplexFloatReal();
        FloatImag = v.getComplexFloatImag();
      } else {
        makeComplexInt();
        IntReal = v.getComplexIntReal();
        IntImag = v.getComplexIntImag();
      }
    }
  };

  struct LValue {
    APValue::LValueBase Base;
    CharUnits Offset;
    CallStackFrame *Frame;
    SubobjectDesignator Designator;

    const APValue::LValueBase getLValueBase() const { return Base; }
    CharUnits &getLValueOffset() { return Offset; }
    const CharUnits &getLValueOffset() const { return Offset; }
    CallStackFrame *getLValueFrame() const { return Frame; }
    SubobjectDesignator &getLValueDesignator() { return Designator; }
    const SubobjectDesignator &getLValueDesignator() const { return Designator;}

    void moveInto(CCValue &V) const {
      V = CCValue(Base, Offset, Frame, Designator);
    }
    void setFrom(const CCValue &V) {
      assert(V.isLValue());
      Base = V.getLValueBase();
      Offset = V.getLValueOffset();
      Frame = V.getLValueFrame();
      Designator = V.getLValueDesignator();
    }

    void set(APValue::LValueBase B, CallStackFrame *F = 0) {
      Base = B;
      Offset = CharUnits::Zero();
      Frame = F;
      Designator = SubobjectDesignator();
    }
  };

  struct MemberPtr {
    MemberPtr() {}
    explicit MemberPtr(const ValueDecl *Decl) :
      DeclAndIsDerivedMember(Decl, false), Path() {}

    /// The member or (direct or indirect) field referred to by this member
    /// pointer, or 0 if this is a null member pointer.
    const ValueDecl *getDecl() const {
      return DeclAndIsDerivedMember.getPointer();
    }
    /// Is this actually a member of some type derived from the relevant class?
    bool isDerivedMember() const {
      return DeclAndIsDerivedMember.getInt();
    }
    /// Get the class which the declaration actually lives in.
    const CXXRecordDecl *getContainingRecord() const {
      return cast<CXXRecordDecl>(
          DeclAndIsDerivedMember.getPointer()->getDeclContext());
    }

    void moveInto(CCValue &V) const {
      V = CCValue(getDecl(), isDerivedMember(), Path);
    }
    void setFrom(const CCValue &V) {
      assert(V.isMemberPointer());
      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
      Path.clear();
      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
      Path.insert(Path.end(), P.begin(), P.end());
    }

    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
    /// whether the member is a member of some class derived from the class type
    /// of the member pointer.
    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
    /// Path - The path of base/derived classes from the member declaration's
    /// class (exclusive) to the class type of the member pointer (inclusive).
    SmallVector<const CXXRecordDecl*, 4> Path;

    /// Perform a cast towards the class of the Decl (either up or down the
    /// hierarchy).
    bool castBack(const CXXRecordDecl *Class) {
      assert(!Path.empty());
      const CXXRecordDecl *Expected;
      if (Path.size() >= 2)
        Expected = Path[Path.size() - 2];
      else
        Expected = getContainingRecord();
      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
        // if B does not contain the original member and is not a base or
        // derived class of the class containing the original member, the result
        // of the cast is undefined.
        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
        // (D::*). We consider that to be a language defect.
        return false;
      }
      Path.pop_back();
      return true;
    }
    /// Perform a base-to-derived member pointer cast.
    bool castToDerived(const CXXRecordDecl *Derived) {
      if (!getDecl())
        return true;
      if (!isDerivedMember()) {
        Path.push_back(Derived);
        return true;
      }
      if (!castBack(Derived))
        return false;
      if (Path.empty())
        DeclAndIsDerivedMember.setInt(false);
      return true;
    }
    /// Perform a derived-to-base member pointer cast.
    bool castToBase(const CXXRecordDecl *Base) {
      if (!getDecl())
        return true;
      if (Path.empty())
        DeclAndIsDerivedMember.setInt(true);
      if (isDerivedMember()) {
        Path.push_back(Base);
        return true;
      }
      return castBack(Base);
    }
  };
}

static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E);
static bool EvaluateConstantExpression(APValue &Result, EvalInfo &Info,
                                       const LValue &This, const Expr *E);
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
                                  EvalInfo &Info);
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
static bool EvaluateIntegerOrLValue(const Expr *E, CCValue &Result,
                                    EvalInfo &Info);
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);

//===----------------------------------------------------------------------===//
// Misc utilities
//===----------------------------------------------------------------------===//

/// Should this call expression be treated as a string literal?
static bool IsStringLiteralCall(const CallExpr *E) {
  unsigned Builtin = E->isBuiltinCall();
  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
}

static bool IsGlobalLValue(APValue::LValueBase B) {
  // C++11 [expr.const]p3 An address constant expression is a prvalue core
  // constant expression of pointer type that evaluates to...

  // ... a null pointer value, or a prvalue core constant expression of type
  // std::nullptr_t.
  if (!B) return true;

  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
    // ... the address of an object with static storage duration,
    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
      return VD->hasGlobalStorage();
    // ... the address of a function,
    return isa<FunctionDecl>(D);
  }

  const Expr *E = B.get<const Expr*>();
  switch (E->getStmtClass()) {
  default:
    return false;
  case Expr::CompoundLiteralExprClass:
    return cast<CompoundLiteralExpr>(E)->isFileScope();
  // A string literal has static storage duration.
  case Expr::StringLiteralClass:
  case Expr::PredefinedExprClass:
  case Expr::ObjCStringLiteralClass:
  case Expr::ObjCEncodeExprClass:
    return true;
  case Expr::CallExprClass:
    return IsStringLiteralCall(cast<CallExpr>(E));
  // For GCC compatibility, &&label has static storage duration.
  case Expr::AddrLabelExprClass:
    return true;
  // A Block literal expression may be used as the initialization value for
  // Block variables at global or local static scope.
  case Expr::BlockExprClass:
    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
  }
}

/// Check that this reference or pointer core constant expression is a valid
/// value for a constant expression. Type T should be either LValue or CCValue.
template<typename T>
static bool CheckLValueConstantExpression(EvalInfo &Info, const Expr *E,
                                          const T &LVal, APValue &Value) {
  if (!IsGlobalLValue(LVal.getLValueBase())) {
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
  // A constant expression must refer to an object or be a null pointer.
  if (Designator.Invalid ||
      (!LVal.getLValueBase() && !Designator.Entries.empty())) {
    // FIXME: This is not a constant expression.
    Value = APValue(LVal.getLValueBase(), LVal.getLValueOffset(),
                    APValue::NoLValuePath());
    return true;
  }

  Value = APValue(LVal.getLValueBase(), LVal.getLValueOffset(),
                  Designator.Entries, Designator.OnePastTheEnd);
  return true;
}

/// Check that this core constant expression value is a valid value for a
/// constant expression, and if it is, produce the corresponding constant value.
/// If not, report an appropriate diagnostic.
static bool CheckConstantExpression(EvalInfo &Info, const Expr *E,
                                    const CCValue &CCValue, APValue &Value) {
  if (!CCValue.isLValue()) {
    Value = CCValue;
    return true;
  }
  return CheckLValueConstantExpression(Info, E, CCValue, Value);
}

const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
  return LVal.Base.dyn_cast<const ValueDecl*>();
}

static bool IsLiteralLValue(const LValue &Value) {
  return Value.Base.dyn_cast<const Expr*>() && !Value.Frame;
}

static bool IsWeakLValue(const LValue &Value) {
  const ValueDecl *Decl = GetLValueBaseDecl(Value);
  return Decl && Decl->isWeak();
}

static bool EvalPointerValueAsBool(const CCValue &Value, bool &Result) {
  // A null base expression indicates a null pointer.  These are always
  // evaluatable, and they are false unless the offset is zero.
  if (!Value.getLValueBase()) {
    Result = !Value.getLValueOffset().isZero();
    return true;
  }

  // Require the base expression to be a global l-value.
  // FIXME: C++11 requires such conversions. Remove this check.
  if (!IsGlobalLValue(Value.getLValueBase())) return false;

  // We have a non-null base.  These are generally known to be true, but if it's
  // a weak declaration it can be null at runtime.
  Result = true;
  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
  return !Decl || !Decl->isWeak();
}

static bool HandleConversionToBool(const CCValue &Val, bool &Result) {
  switch (Val.getKind()) {
  case APValue::Uninitialized:
    return false;
  case APValue::Int:
    Result = Val.getInt().getBoolValue();
    return true;
  case APValue::Float:
    Result = !Val.getFloat().isZero();
    return true;
  case APValue::ComplexInt:
    Result = Val.getComplexIntReal().getBoolValue() ||
             Val.getComplexIntImag().getBoolValue();
    return true;
  case APValue::ComplexFloat:
    Result = !Val.getComplexFloatReal().isZero() ||
             !Val.getComplexFloatImag().isZero();
    return true;
  case APValue::LValue:
    return EvalPointerValueAsBool(Val, Result);
  case APValue::MemberPointer:
    Result = Val.getMemberPointerDecl();
    return true;
  case APValue::Vector:
  case APValue::Array:
  case APValue::Struct:
  case APValue::Union:
    return false;
  }

  llvm_unreachable("unknown APValue kind");
}

static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
                                       EvalInfo &Info) {
  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
  CCValue Val;
  if (!Evaluate(Val, Info, E))
    return false;
  return HandleConversionToBool(Val, Result);
}

static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType,
                                   APFloat &Value, const ASTContext &Ctx) {
  unsigned DestWidth = Ctx.getIntWidth(DestType);
  // Determine whether we are converting to unsigned or signed.
  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();

  // FIXME: Warning for overflow.
  APSInt Result(DestWidth, !DestSigned);
  bool ignored;
  (void)Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored);
  return Result;
}

static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType,
                                      APFloat &Value, const ASTContext &Ctx) {
  bool ignored;
  APFloat Result = Value;
  Result.convert(Ctx.getFloatTypeSemantics(DestType),
                 APFloat::rmNearestTiesToEven, &ignored);
  return Result;
}

static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
                                 APSInt &Value, const ASTContext &Ctx) {
  unsigned DestWidth = Ctx.getIntWidth(DestType);
  APSInt Result = Value;
  // Figure out if this is a truncate, extend or noop cast.
  // If the input is signed, do a sign extend, noop, or truncate.
  Result = Result.extOrTrunc(DestWidth);
  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
  return Result;
}

static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType,
                                    APSInt &Value, const ASTContext &Ctx) {

  APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1);
  Result.convertFromAPInt(Value, Value.isSigned(),
                          APFloat::rmNearestTiesToEven);
  return Result;
}

static bool FindMostDerivedObject(EvalInfo &Info, const LValue &LVal,
                                  const CXXRecordDecl *&MostDerivedType,
                                  unsigned &MostDerivedPathLength,
                                  bool &MostDerivedIsArrayElement) {
  const SubobjectDesignator &D = LVal.Designator;
  if (D.Invalid || !LVal.Base)
    return false;

  const Type *T = getType(LVal.Base).getTypePtr();

  // Find path prefix which leads to the most-derived subobject.
  MostDerivedType = T->getAsCXXRecordDecl();
  MostDerivedPathLength = 0;
  MostDerivedIsArrayElement = false;

  for (unsigned I = 0, N = D.Entries.size(); I != N; ++I) {
    bool IsArray = T && T->isArrayType();
    if (IsArray)
      T = T->getBaseElementTypeUnsafe();
    else if (const FieldDecl *FD = getAsField(D.Entries[I]))
      T = FD->getType().getTypePtr();
    else
      T = 0;

    if (T) {
      MostDerivedType = T->getAsCXXRecordDecl();
      MostDerivedPathLength = I + 1;
      MostDerivedIsArrayElement = IsArray;
    }
  }

  // (B*)&d + 1 has no most-derived object.
  if (D.OnePastTheEnd && MostDerivedPathLength != D.Entries.size())
    return false;

  return MostDerivedType != 0;
}

static void TruncateLValueBasePath(EvalInfo &Info, LValue &Result,
                                   const RecordDecl *TruncatedType,
                                   unsigned TruncatedElements,
                                   bool IsArrayElement) {
  SubobjectDesignator &D = Result.Designator;
  const RecordDecl *RD = TruncatedType;
  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
    if (isVirtualBaseClass(D.Entries[I]))
      Result.Offset -= Layout.getVBaseClassOffset(Base);
    else
      Result.Offset -= Layout.getBaseClassOffset(Base);
    RD = Base;
  }
  D.Entries.resize(TruncatedElements);
  D.ArrayElement = IsArrayElement;
}

/// If the given LValue refers to a base subobject of some object, find the most
/// derived object and the corresponding complete record type. This is necessary
/// in order to find the offset of a virtual base class.
static bool ExtractMostDerivedObject(EvalInfo &Info, LValue &Result,
                                     const CXXRecordDecl *&MostDerivedType) {
  unsigned MostDerivedPathLength;
  bool MostDerivedIsArrayElement;
  if (!FindMostDerivedObject(Info, Result, MostDerivedType,
                             MostDerivedPathLength, MostDerivedIsArrayElement))
    return false;

  // Remove the trailing base class path entries and their offsets.
  TruncateLValueBasePath(Info, Result, MostDerivedType, MostDerivedPathLength,
                         MostDerivedIsArrayElement);
  return true;
}

static void HandleLValueDirectBase(EvalInfo &Info, LValue &Obj,
                                   const CXXRecordDecl *Derived,
                                   const CXXRecordDecl *Base,
                                   const ASTRecordLayout *RL = 0) {
  if (!RL) RL = &Info.Ctx.getASTRecordLayout(Derived);
  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
  Obj.Designator.addDecl(Base, /*Virtual*/ false);
}

static bool HandleLValueBase(EvalInfo &Info, LValue &Obj,
                             const CXXRecordDecl *DerivedDecl,
                             const CXXBaseSpecifier *Base) {
  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();

  if (!Base->isVirtual()) {
    HandleLValueDirectBase(Info, Obj, DerivedDecl, BaseDecl);
    return true;
  }

  // Extract most-derived object and corresponding type.
  if (!ExtractMostDerivedObject(Info, Obj, DerivedDecl))
    return false;

  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
  Obj.Designator.addDecl(BaseDecl, /*Virtual*/ true);
  return true;
}

/// Update LVal to refer to the given field, which must be a member of the type
/// currently described by LVal.
static void HandleLValueMember(EvalInfo &Info, LValue &LVal,
                               const FieldDecl *FD,
                               const ASTRecordLayout *RL = 0) {
  if (!RL)
    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());

  unsigned I = FD->getFieldIndex();
  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
  LVal.Designator.addDecl(FD);
}

/// Get the size of the given type in char units.
static bool HandleSizeof(EvalInfo &Info, QualType Type, CharUnits &Size) {
  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
  // extension.
  if (Type->isVoidType() || Type->isFunctionType()) {
    Size = CharUnits::One();
    return true;
  }

  if (!Type->isConstantSizeType()) {
    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
    return false;
  }

  Size = Info.Ctx.getTypeSizeInChars(Type);
  return true;
}

/// Update a pointer value to model pointer arithmetic.
/// \param Info - Information about the ongoing evaluation.
/// \param LVal - The pointer value to be updated.
/// \param EltTy - The pointee type represented by LVal.
/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
static bool HandleLValueArrayAdjustment(EvalInfo &Info, LValue &LVal,
                                        QualType EltTy, int64_t Adjustment) {
  CharUnits SizeOfPointee;
  if (!HandleSizeof(Info, EltTy, SizeOfPointee))
    return false;

  // Compute the new offset in the appropriate width.
  LVal.Offset += Adjustment * SizeOfPointee;
  LVal.Designator.adjustIndex(Adjustment);
  return true;
}

/// Try to evaluate the initializer for a variable declaration.
static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
                                const VarDecl *VD,
                                CallStackFrame *Frame, CCValue &Result) {
  // If this is a parameter to an active constexpr function call, perform
  // argument substitution.
  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
    if (!Frame || !Frame->Arguments) {
      Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
      return false;
    }
    Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
    return true;
  }

  // If we're currently evaluating the initializer of this declaration, use that
  // in-flight value.
  if (Info.EvaluatingDecl == VD) {
    Result = CCValue(*Info.EvaluatingDeclValue, CCValue::GlobalValue());
    return !Result.isUninit();
  }

  // Never evaluate the initializer of a weak variable. We can't be sure that
  // this is the definition which will be used.
  if (VD->isWeak()) {
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  const Expr *Init = VD->getAnyInitializer();
  if (!Init || Init->isValueDependent()) {
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  if (APValue *V = VD->getEvaluatedValue()) {
    Result = CCValue(*V, CCValue::GlobalValue());
    return !Result.isUninit();
  }

  if (VD->isEvaluatingValue()) {
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  VD->setEvaluatingValue();

  Expr::EvalStatus EStatus;
  EvalInfo InitInfo(Info.Ctx, EStatus);
  APValue EvalResult;
  InitInfo.setEvaluatingDecl(VD, EvalResult);
  LValue LVal;
  LVal.set(VD);
  // FIXME: The caller will need to know whether the value was a constant
  // expression. If not, we should propagate up a diagnostic.
  if (!EvaluateConstantExpression(EvalResult, InitInfo, LVal, Init)) {
    // FIXME: If the evaluation failure was not permanent (for instance, if we
    // hit a variable with no declaration yet, or a constexpr function with no
    // definition yet), the standard is unclear as to how we should behave.
    //
    // Either the initializer should be evaluated when the variable is defined,
    // or a failed evaluation of the initializer should be reattempted each time
    // it is used.
    VD->setEvaluatedValue(APValue());
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  VD->setEvaluatedValue(EvalResult);
  Result = CCValue(EvalResult, CCValue::GlobalValue());
  return true;
}

static bool IsConstNonVolatile(QualType T) {
  Qualifiers Quals = T.getQualifiers();
  return Quals.hasConst() && !Quals.hasVolatile();
}

/// Get the base index of the given base class within an APValue representing
/// the given derived class.
static unsigned getBaseIndex(const CXXRecordDecl *Derived,
                             const CXXRecordDecl *Base) {
  Base = Base->getCanonicalDecl();
  unsigned Index = 0;
  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
         E = Derived->bases_end(); I != E; ++I, ++Index) {
    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
      return Index;
  }

  llvm_unreachable("base class missing from derived class's bases list");
}

/// Extract the designated sub-object of an rvalue.
static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
                             CCValue &Obj, QualType ObjType,
                             const SubobjectDesignator &Sub, QualType SubType) {
  if (Sub.Invalid || Sub.OnePastTheEnd) {
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }
  if (Sub.Entries.empty())
    return true;

  assert(!Obj.isLValue() && "extracting subobject of lvalue");
  const APValue *O = &Obj;
  // Walk the designator's path to find the subobject.
  for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
    if (ObjType->isArrayType()) {
      // Next subobject is an array element.
      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
      assert(CAT && "vla in literal type?");
      uint64_t Index = Sub.Entries[I].ArrayIndex;
      if (CAT->getSize().ule(Index)) {
        Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
        return false;
      }
      if (O->getArrayInitializedElts() > Index)
        O = &O->getArrayInitializedElt(Index);
      else
        O = &O->getArrayFiller();
      ObjType = CAT->getElementType();
    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
      // Next subobject is a class, struct or union field.
      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
      if (RD->isUnion()) {
        const FieldDecl *UnionField = O->getUnionField();
        if (!UnionField ||
            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
          Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
          return false;
        }
        O = &O->getUnionValue();
      } else
        O = &O->getStructField(Field->getFieldIndex());
      ObjType = Field->getType();
    } else {
      // Next subobject is a base class.
      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
      O = &O->getStructBase(getBaseIndex(Derived, Base));
      ObjType = Info.Ctx.getRecordType(Base);
    }

    if (O->isUninit()) {
      Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
      return false;
    }
  }

  Obj = CCValue(*O, CCValue::GlobalValue());
  return true;
}

/// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
/// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
/// for looking up the glvalue referred to by an entity of reference type.
///
/// \param Info - Information about the ongoing evaluation.
/// \param Conv - The expression for which we are performing the conversion.
///               Used for diagnostics.
/// \param Type - The type we expect this conversion to produce.
/// \param LVal - The glvalue on which we are attempting to perform this action.
/// \param RVal - The produced value will be placed here.
static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
                                           QualType Type,
                                           const LValue &LVal, CCValue &RVal) {
  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
  CallStackFrame *Frame = LVal.Frame;

  if (!LVal.Base) {
    // FIXME: Indirection through a null pointer deserves a specific diagnostic.
    Info.Diag(Conv->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
    // In C++11, constexpr, non-volatile variables initialized with constant
    // expressions are constant expressions too. Inside constexpr functions,
    // parameters are constant expressions even if they're non-const.
    // In C, such things can also be folded, although they are not ICEs.
    //
    // FIXME: volatile-qualified ParmVarDecls need special handling. A literal
    // interpretation of C++11 suggests that volatile parameters are OK if
    // they're never read (there's no prohibition against constructing volatile
    // objects in constant expressions), but lvalue-to-rvalue conversions on
    // them are not permitted.
    const VarDecl *VD = dyn_cast<VarDecl>(D);
    if (!VD || VD->isInvalidDecl()) {
      Info.Diag(Conv->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
      return false;
    }

    QualType VT = VD->getType();
    if (!isa<ParmVarDecl>(VD)) {
      if (!IsConstNonVolatile(VT)) {
        Info.Diag(Conv->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
        return false;
      }
      // FIXME: Allow folding of values of any literal type in all languages.
      if (!VT->isIntegralOrEnumerationType() && !VT->isRealFloatingType() &&
          !VD->isConstexpr()) {
        Info.Diag(Conv->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
        return false;
      }
    }
    if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
      return false;

    if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
      return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);

    // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
    // conversion. This happens when the declaration and the lvalue should be
    // considered synonymous, for instance when initializing an array of char
    // from a string literal. Continue as if the initializer lvalue was the
    // value we were originally given.
    assert(RVal.getLValueOffset().isZero() &&
           "offset for lvalue init of non-reference");
    Base = RVal.getLValueBase().get<const Expr*>();
    Frame = RVal.getLValueFrame();
  }

  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
  if (const StringLiteral *S = dyn_cast<StringLiteral>(Base)) {
    const SubobjectDesignator &Designator = LVal.Designator;
    if (Designator.Invalid || Designator.Entries.size() != 1) {
      Info.Diag(Conv->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
      return false;
    }

    assert(Type->isIntegerType() && "string element not integer type");
    uint64_t Index = Designator.Entries[0].ArrayIndex;
    if (Index > S->getLength()) {
      Info.Diag(Conv->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
      return false;
    }
    APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
                 Type->isUnsignedIntegerType());
    if (Index < S->getLength())
      Value = S->getCodeUnit(Index);
    RVal = CCValue(Value);
    return true;
  }

  if (Frame) {
    // If this is a temporary expression with a nontrivial initializer, grab the
    // value from the relevant stack frame.
    RVal = Frame->Temporaries[Base];
  } else if (const CompoundLiteralExpr *CLE
             = dyn_cast<CompoundLiteralExpr>(Base)) {
    // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
    // initializer until now for such expressions. Such an expression can't be
    // an ICE in C, so this only matters for fold.
    assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
    if (!Evaluate(RVal, Info, CLE->getInitializer()))
      return false;
  } else {
    Info.Diag(Conv->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
                          Type);
}

/// Build an lvalue for the object argument of a member function call.
static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
                                   LValue &This) {
  if (Object->getType()->isPointerType())
    return EvaluatePointer(Object, This, Info);

  if (Object->isGLValue())
    return EvaluateLValue(Object, This, Info);

  if (Object->getType()->isLiteralType())
    return EvaluateTemporary(Object, This, Info);

  return false;
}

/// HandleMemberPointerAccess - Evaluate a member access operation and build an
/// lvalue referring to the result.
///
/// \param Info - Information about the ongoing evaluation.
/// \param BO - The member pointer access operation.
/// \param LV - Filled in with a reference to the resulting object.
/// \param IncludeMember - Specifies whether the member itself is included in
///        the resulting LValue subobject designator. This is not possible when
///        creating a bound member function.
/// \return The field or method declaration to which the member pointer refers,
///         or 0 if evaluation fails.
static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
                                                  const BinaryOperator *BO,
                                                  LValue &LV,
                                                  bool IncludeMember = true) {
  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);

  if (!EvaluateObjectArgument(Info, BO->getLHS(), LV))
    return 0;

  MemberPtr MemPtr;
  if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
    return 0;

  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
  // member value, the behavior is undefined.
  if (!MemPtr.getDecl())
    return 0;

  if (MemPtr.isDerivedMember()) {
    // This is a member of some derived class. Truncate LV appropriately.
    const CXXRecordDecl *MostDerivedType;
    unsigned MostDerivedPathLength;
    bool MostDerivedIsArrayElement;
    if (!FindMostDerivedObject(Info, LV, MostDerivedType, MostDerivedPathLength,
                               MostDerivedIsArrayElement))
      return 0;

    // The end of the derived-to-base path for the base object must match the
    // derived-to-base path for the member pointer.
    if (MostDerivedPathLength + MemPtr.Path.size() >
        LV.Designator.Entries.size())
      return 0;
    unsigned PathLengthToMember =
        LV.Designator.Entries.size() - MemPtr.Path.size();
    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
      const CXXRecordDecl *LVDecl = getAsBaseClass(
          LV.Designator.Entries[PathLengthToMember + I]);
      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
        return 0;
    }

    // Truncate the lvalue to the appropriate derived class.
    bool ResultIsArray = false;
    if (PathLengthToMember == MostDerivedPathLength)
      ResultIsArray = MostDerivedIsArrayElement;
    TruncateLValueBasePath(Info, LV, MemPtr.getContainingRecord(),
                           PathLengthToMember, ResultIsArray);
  } else if (!MemPtr.Path.empty()) {
    // Extend the LValue path with the member pointer's path.
    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
                                  MemPtr.Path.size() + IncludeMember);

    // Walk down to the appropriate base class.
    QualType LVType = BO->getLHS()->getType();
    if (const PointerType *PT = LVType->getAs<PointerType>())
      LVType = PT->getPointeeType();
    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
    assert(RD && "member pointer access on non-class-type expression");
    // The first class in the path is that of the lvalue.
    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
      HandleLValueDirectBase(Info, LV, RD, Base);
      RD = Base;
    }
    // Finally cast to the class containing the member.
    HandleLValueDirectBase(Info, LV, RD, MemPtr.getContainingRecord());
  }

  // Add the member. Note that we cannot build bound member functions here.
  if (IncludeMember) {
    // FIXME: Deal with IndirectFieldDecls.
    const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl());
    if (!FD) return 0;
    HandleLValueMember(Info, LV, FD);
  }

  return MemPtr.getDecl();
}

/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
/// the provided lvalue, which currently refers to the base object.
static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
                                    LValue &Result) {
  const CXXRecordDecl *MostDerivedType;
  unsigned MostDerivedPathLength;
  bool MostDerivedIsArrayElement;

  // Check this cast doesn't take us outside the object.
  if (!FindMostDerivedObject(Info, Result, MostDerivedType,
                             MostDerivedPathLength,
                             MostDerivedIsArrayElement))
    return false;
  SubobjectDesignator &D = Result.Designator;
  if (MostDerivedPathLength + E->path_size() > D.Entries.size())
    return false;

  // Check the type of the final cast. We don't need to check the path,
  // since a cast can only be formed if the path is unique.
  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
  bool ResultIsArray = false;
  QualType TargetQT = E->getType();
  if (const PointerType *PT = TargetQT->getAs<PointerType>())
    TargetQT = PT->getPointeeType();
  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
  const CXXRecordDecl *FinalType;
  if (NewEntriesSize == MostDerivedPathLength) {
    ResultIsArray = MostDerivedIsArrayElement;
    FinalType = MostDerivedType;
  } else
    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl())
    return false;

  // Truncate the lvalue to the appropriate derived class.
  TruncateLValueBasePath(Info, Result, TargetType, NewEntriesSize,
                         ResultIsArray);
  return true;
}

namespace {
enum EvalStmtResult {
  /// Evaluation failed.
  ESR_Failed,
  /// Hit a 'return' statement.
  ESR_Returned,
  /// Evaluation succeeded.
  ESR_Succeeded
};
}

// Evaluate a statement.
static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info,
                                   const Stmt *S) {
  switch (S->getStmtClass()) {
  default:
    return ESR_Failed;

  case Stmt::NullStmtClass:
  case Stmt::DeclStmtClass:
    return ESR_Succeeded;

  case Stmt::ReturnStmtClass:
    if (Evaluate(Result, Info, cast<ReturnStmt>(S)->getRetValue()))
      return ESR_Returned;
    return ESR_Failed;

  case Stmt::CompoundStmtClass: {
    const CompoundStmt *CS = cast<CompoundStmt>(S);
    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
           BE = CS->body_end(); BI != BE; ++BI) {
      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
      if (ESR != ESR_Succeeded)
        return ESR;
    }
    return ESR_Succeeded;
  }
  }
}

namespace {
typedef SmallVector<CCValue, 8> ArgVector;
}

/// EvaluateArgs - Evaluate the arguments to a function call.
static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
                         EvalInfo &Info) {
  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
       I != E; ++I)
    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I))
      return false;
  return true;
}

/// Evaluate a function call.
static bool HandleFunctionCall(const Expr *CallExpr, const LValue *This,
                               ArrayRef<const Expr*> Args, const Stmt *Body,
                               EvalInfo &Info, CCValue &Result) {
  if (Info.atCallLimit()) {
    // FIXME: Add a specific proper diagnostic for this.
    Info.Diag(CallExpr->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  ArgVector ArgValues(Args.size());
  if (!EvaluateArgs(Args, ArgValues, Info))
    return false;

  CallStackFrame Frame(Info, This, ArgValues.data());
  return EvaluateStmt(Result, Info, Body) == ESR_Returned;
}

/// Evaluate a constructor call.
static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
                                  ArrayRef<const Expr*> Args,
                                  const CXXConstructorDecl *Definition,
                                  EvalInfo &Info,
                                  APValue &Result) {
  if (Info.atCallLimit()) {
    // FIXME: Add a specific diagnostic for this.
    Info.Diag(CallExpr->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  ArgVector ArgValues(Args.size());
  if (!EvaluateArgs(Args, ArgValues, Info))
    return false;

  CallStackFrame Frame(Info, &This, ArgValues.data());

  // If it's a delegating constructor, just delegate.
  if (Definition->isDelegatingConstructor()) {
    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
    return EvaluateConstantExpression(Result, Info, This, (*I)->getInit());
  }

  // Reserve space for the struct members.
  const CXXRecordDecl *RD = Definition->getParent();
  if (!RD->isUnion())
    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
                     std::distance(RD->field_begin(), RD->field_end()));

  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);

  unsigned BasesSeen = 0;
#ifndef NDEBUG
  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
#endif
  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
       E = Definition->init_end(); I != E; ++I) {
    if ((*I)->isBaseInitializer()) {
      QualType BaseType((*I)->getBaseClass(), 0);
#ifndef NDEBUG
      // Non-virtual base classes are initialized in the order in the class
      // definition. We cannot have a virtual base class for a literal type.
      assert(!BaseIt->isVirtual() && "virtual base for literal type");
      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
             "base class initializers not in expected order");
      ++BaseIt;
#endif
      LValue Subobject = This;
      HandleLValueDirectBase(Info, Subobject, RD,
                             BaseType->getAsCXXRecordDecl(), &Layout);
      if (!EvaluateConstantExpression(Result.getStructBase(BasesSeen++), Info,
                                      Subobject, (*I)->getInit()))
        return false;
    } else if (FieldDecl *FD = (*I)->getMember()) {
      LValue Subobject = This;
      HandleLValueMember(Info, Subobject, FD, &Layout);
      if (RD->isUnion()) {
        Result = APValue(FD);
        if (!EvaluateConstantExpression(Result.getUnionValue(), Info,
                                        Subobject, (*I)->getInit()))
          return false;
      } else if (!EvaluateConstantExpression(
                   Result.getStructField(FD->getFieldIndex()),
                   Info, Subobject, (*I)->getInit()))
        return false;
    } else {
      // FIXME: handle indirect field initializers
      Info.Diag((*I)->getInit()->getExprLoc(),
                diag::note_invalid_subexpr_in_const_expr);
      return false;
    }
  }

  return true;
}

namespace {
class HasSideEffect
  : public ConstStmtVisitor<HasSideEffect, bool> {
  const ASTContext &Ctx;
public:

  HasSideEffect(const ASTContext &C) : Ctx(C) {}

  // Unhandled nodes conservatively default to having side effects.
  bool VisitStmt(const Stmt *S) {
    return true;
  }

  bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); }
  bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
    return Visit(E->getResultExpr());
  }
  bool VisitDeclRefExpr(const DeclRefExpr *E) {
    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
      return true;
    return false;
  }
  bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) {
    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
      return true;
    return false;
  }
  bool VisitBlockDeclRefExpr (const BlockDeclRefExpr *E) {
    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
      return true;
    return false;
  }

  // We don't want to evaluate BlockExprs multiple times, as they generate
  // a ton of code.
  bool VisitBlockExpr(const BlockExpr *E) { return true; }
  bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; }
  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E)
    { return Visit(E->getInitializer()); }
  bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); }
  bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; }
  bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; }
  bool VisitStringLiteral(const StringLiteral *E) { return false; }
  bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; }
  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E)
    { return false; }
  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E)
    { return Visit(E->getLHS()) || Visit(E->getRHS()); }
  bool VisitChooseExpr(const ChooseExpr *E)
    { return Visit(E->getChosenSubExpr(Ctx)); }
  bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); }
  bool VisitBinAssign(const BinaryOperator *E) { return true; }
  bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; }
  bool VisitBinaryOperator(const BinaryOperator *E)
  { return Visit(E->getLHS()) || Visit(E->getRHS()); }
  bool VisitUnaryPreInc(const UnaryOperator *E) { return true; }
  bool VisitUnaryPostInc(const UnaryOperator *E) { return true; }
  bool VisitUnaryPreDec(const UnaryOperator *E) { return true; }
  bool VisitUnaryPostDec(const UnaryOperator *E) { return true; }
  bool VisitUnaryDeref(const UnaryOperator *E) {
    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
      return true;
    return Visit(E->getSubExpr());
  }
  bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); }
    
  // Has side effects if any element does.
  bool VisitInitListExpr(const InitListExpr *E) {
    for (unsigned i = 0, e = E->getNumInits(); i != e; ++i)
      if (Visit(E->getInit(i))) return true;
    if (const Expr *filler = E->getArrayFiller())
      return Visit(filler);
    return false;
  }
    
  bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; }
};

class OpaqueValueEvaluation {
  EvalInfo &info;
  OpaqueValueExpr *opaqueValue;

public:
  OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue,
                        Expr *value)
    : info(info), opaqueValue(opaqueValue) {

    // If evaluation fails, fail immediately.
    if (!Evaluate(info.OpaqueValues[opaqueValue], info, value)) {
      this->opaqueValue = 0;
      return;
    }
  }

  bool hasError() const { return opaqueValue == 0; }

  ~OpaqueValueEvaluation() {
    // FIXME: This will not work for recursive constexpr functions using opaque
    // values. Restore the former value.
    if (opaqueValue) info.OpaqueValues.erase(opaqueValue);
  }
};
  
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Generic Evaluation
//===----------------------------------------------------------------------===//
namespace {

// FIXME: RetTy is always bool. Remove it.
template <class Derived, typename RetTy=bool>
class ExprEvaluatorBase
  : public ConstStmtVisitor<Derived, RetTy> {
private:
  RetTy DerivedSuccess(const CCValue &V, const Expr *E) {
    return static_cast<Derived*>(this)->Success(V, E);
  }
  RetTy DerivedValueInitialization(const Expr *E) {
    return static_cast<Derived*>(this)->ValueInitialization(E);
  }

protected:
  EvalInfo &Info;
  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;

  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
    return Info.CCEDiag(E->getExprLoc(), D);
  }

  /// Report an evaluation error. This should only be called when an error is
  /// first discovered. When propagating an error, just return false.
  bool Error(const Expr *E, diag::kind D) {
    Info.Diag(E->getExprLoc(), D);
    return false;
  }
  bool Error(const Expr *E) {
    return Error(E, diag::note_invalid_subexpr_in_const_expr);
  }

  RetTy ValueInitialization(const Expr *E) { return Error(E); }

public:
  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}

  RetTy VisitStmt(const Stmt *) {
    llvm_unreachable("Expression evaluator should not be called on stmts");
  }
  RetTy VisitExpr(const Expr *E) {
    return Error(E);
  }

  RetTy VisitParenExpr(const ParenExpr *E)
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
  RetTy VisitUnaryExtension(const UnaryOperator *E)
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
  RetTy VisitUnaryPlus(const UnaryOperator *E)
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
  RetTy VisitChooseExpr(const ChooseExpr *E)
    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
    { return StmtVisitorTy::Visit(E->getResultExpr()); }
  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
    { return StmtVisitorTy::Visit(E->getReplacement()); }
  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
    { return StmtVisitorTy::Visit(E->getExpr()); }

  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
    return static_cast<Derived*>(this)->VisitCastExpr(E);
  }
  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
    return static_cast<Derived*>(this)->VisitCastExpr(E);
  }

  RetTy VisitBinaryOperator(const BinaryOperator *E) {
    switch (E->getOpcode()) {
    default:
      return Error(E);

    case BO_Comma:
      VisitIgnoredValue(E->getLHS());
      return StmtVisitorTy::Visit(E->getRHS());

    case BO_PtrMemD:
    case BO_PtrMemI: {
      LValue Obj;
      if (!HandleMemberPointerAccess(Info, E, Obj))
        return false;
      CCValue Result;
      if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
        return false;
      return DerivedSuccess(Result, E);
    }
    }
  }

  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
    OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon());
    if (opaque.hasError())
      return false;

    bool cond;
    if (!EvaluateAsBooleanCondition(E->getCond(), cond, Info))
      return false;

    return StmtVisitorTy::Visit(cond ? E->getTrueExpr() : E->getFalseExpr());
  }

  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
    bool BoolResult;
    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info))
      return false;

    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
    return StmtVisitorTy::Visit(EvalExpr);
  }

  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
    const CCValue *Value = Info.getOpaqueValue(E);
    if (!Value) {
      const Expr *Source = E->getSourceExpr();
      if (!Source)
        return Error(E);
      if (Source == E) { // sanity checking.
        assert(0 && "OpaqueValueExpr recursively refers to itself");
        return Error(E);
      }
      return StmtVisitorTy::Visit(Source);
    }
    return DerivedSuccess(*Value, E);
  }

  RetTy VisitCallExpr(const CallExpr *E) {
    const Expr *Callee = E->getCallee()->IgnoreParens();
    QualType CalleeType = Callee->getType();

    const FunctionDecl *FD = 0;
    LValue *This = 0, ThisVal;
    llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());

    // Extract function decl and 'this' pointer from the callee.
    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
      const ValueDecl *Member = 0;
      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
        // Explicit bound member calls, such as x.f() or p->g();
        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
          return false;
        Member = ME->getMemberDecl();
        This = &ThisVal;
      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
        // Indirect bound member calls ('.*' or '->*').
        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
        if (!Member) return false;
        This = &ThisVal;
      } else
        return Error(Callee);

      FD = dyn_cast<FunctionDecl>(Member);
      if (!FD)
        return Error(Callee);
    } else if (CalleeType->isFunctionPointerType()) {
      CCValue Call;
      if (!Evaluate(Call, Info, Callee))
        return false;

      if (!Call.isLValue() || !Call.getLValueOffset().isZero())
        return Error(Callee);
      FD = dyn_cast_or_null<FunctionDecl>(
                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
      if (!FD)
        return Error(Callee);

      // Overloaded operator calls to member functions are represented as normal
      // calls with '*this' as the first argument.
      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
      if (MD && !MD->isStatic()) {
        // FIXME: When selecting an implicit conversion for an overloaded
        // operator delete, we sometimes try to evaluate calls to conversion
        // operators without a 'this' parameter!
        if (Args.empty())
          return Error(E);

        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
          return false;
        This = &ThisVal;
        Args = Args.slice(1);
      }

      // Don't call function pointers which have been cast to some other type.
      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
        return Error(E);
    } else
      return Error(E);

    const FunctionDecl *Definition;
    Stmt *Body = FD->getBody(Definition);
    CCValue CCResult;
    APValue Result;

    if (!Body || !Definition->isConstexpr() || Definition->isInvalidDecl())
      return Error(E);

    if (!HandleFunctionCall(E, This, Args, Body, Info, CCResult) ||
        !CheckConstantExpression(Info, E, CCResult, Result))
      return false;

    return DerivedSuccess(CCValue(Result, CCValue::GlobalValue()), E);
  }

  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
    return StmtVisitorTy::Visit(E->getInitializer());
  }
  RetTy VisitInitListExpr(const InitListExpr *E) {
    if (Info.getLangOpts().CPlusPlus0x) {
      if (E->getNumInits() == 0)
        return DerivedValueInitialization(E);
      if (E->getNumInits() == 1)
        return StmtVisitorTy::Visit(E->getInit(0));
    }
    return Error(E);
  }
  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    return DerivedValueInitialization(E);
  }
  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    return DerivedValueInitialization(E);
  }
  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    return DerivedValueInitialization(E);
  }

  /// A member expression where the object is a prvalue is itself a prvalue.
  RetTy VisitMemberExpr(const MemberExpr *E) {
    assert(!E->isArrow() && "missing call to bound member function?");

    CCValue Val;
    if (!Evaluate(Val, Info, E->getBase()))
      return false;

    QualType BaseTy = E->getBase()->getType();

    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
    if (!FD) return Error(E);
    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
    assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
           FD->getParent()->getCanonicalDecl() && "record / field mismatch");

    SubobjectDesignator Designator;
    Designator.addDecl(FD);

    return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
           DerivedSuccess(Val, E);
  }

  RetTy VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      break;

    case CK_NoOp:
      return StmtVisitorTy::Visit(E->getSubExpr());

    case CK_LValueToRValue: {
      LValue LVal;
      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
        return false;
      CCValue RVal;
      if (!HandleLValueToRValueConversion(Info, E, E->getType(), LVal, RVal))
        return false;
      return DerivedSuccess(RVal, E);
    }
    }

    return Error(E);
  }

  /// Visit a value which is evaluated, but whose value is ignored.
  void VisitIgnoredValue(const Expr *E) {
    CCValue Scratch;
    if (!Evaluate(Scratch, Info, E))
      Info.EvalStatus.HasSideEffects = true;
  }
};

}

//===----------------------------------------------------------------------===//
// Common base class for lvalue and temporary evaluation.
//===----------------------------------------------------------------------===//
namespace {
template<class Derived>
class LValueExprEvaluatorBase
  : public ExprEvaluatorBase<Derived, bool> {
protected:
  LValue &Result;
  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;

  bool Success(APValue::LValueBase B) {
    Result.set(B);
    return true;
  }

public:
  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
    ExprEvaluatorBaseTy(Info), Result(Result) {}

  bool Success(const CCValue &V, const Expr *E) {
    Result.setFrom(V);
    return true;
  }

  bool CheckValidLValue() {
    // C++11 [basic.lval]p1: An lvalue designates a function or an object. Hence
    // there are no null references, nor once-past-the-end references.
    // FIXME: Check for one-past-the-end array indices
    return Result.Base && !Result.Designator.Invalid &&
           !Result.Designator.OnePastTheEnd;
  }

  bool VisitMemberExpr(const MemberExpr *E) {
    // Handle non-static data members.
    QualType BaseTy;
    if (E->isArrow()) {
      if (!EvaluatePointer(E->getBase(), Result, this->Info))
        return false;
      BaseTy = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
    } else {
      if (!this->Visit(E->getBase()))
        return false;
      BaseTy = E->getBase()->getType();
    }
    // FIXME: In C++11, require the result to be a valid lvalue.

    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
    // FIXME: Handle IndirectFieldDecls
    if (!FD) return this->Error(E);
    assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
    (void)BaseTy;

    HandleLValueMember(this->Info, Result, FD);

    if (FD->getType()->isReferenceType()) {
      CCValue RefValue;
      if (!HandleLValueToRValueConversion(this->Info, E, FD->getType(), Result,
                                          RefValue))
        return false;
      return Success(RefValue, E);
    }
    return true;
  }

  bool VisitBinaryOperator(const BinaryOperator *E) {
    switch (E->getOpcode()) {
    default:
      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

    case BO_PtrMemD:
    case BO_PtrMemI:
      return HandleMemberPointerAccess(this->Info, E, Result);
    }
  }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return ExprEvaluatorBaseTy::VisitCastExpr(E);

    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase: {
      if (!this->Visit(E->getSubExpr()))
        return false;
      if (!CheckValidLValue())
        return false;

      // Now figure out the necessary offset to add to the base LV to get from
      // the derived class to the base class.
      QualType Type = E->getSubExpr()->getType();

      for (CastExpr::path_const_iterator PathI = E->path_begin(),
           PathE = E->path_end(); PathI != PathE; ++PathI) {
        if (!HandleLValueBase(this->Info, Result, Type->getAsCXXRecordDecl(),
                              *PathI))
          return false;
        Type = (*PathI)->getType();
      }

      return true;
    }
    }
  }
};
}

//===----------------------------------------------------------------------===//
// LValue Evaluation
//
// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
// function designators (in C), decl references to void objects (in C), and
// temporaries (if building with -Wno-address-of-temporary).
//
// LValue evaluation produces values comprising a base expression of one of the
// following types:
// - Declarations
//  * VarDecl
//  * FunctionDecl
// - Literals
//  * CompoundLiteralExpr in C
//  * StringLiteral
//  * PredefinedExpr
//  * ObjCStringLiteralExpr
//  * ObjCEncodeExpr
//  * AddrLabelExpr
//  * BlockExpr
//  * CallExpr for a MakeStringConstant builtin
// - Locals and temporaries
//  * Any Expr, with a Frame indicating the function in which the temporary was
//    evaluated.
// plus an offset in bytes.
//===----------------------------------------------------------------------===//
namespace {
class LValueExprEvaluator
  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
public:
  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
    LValueExprEvaluatorBaseTy(Info, Result) {}

  bool VisitVarDecl(const Expr *E, const VarDecl *VD);

  bool VisitDeclRefExpr(const DeclRefExpr *E);
  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
  bool VisitMemberExpr(const MemberExpr *E);
  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
  bool VisitUnaryDeref(const UnaryOperator *E);

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);

    case CK_LValueBitCast:
      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
      if (!Visit(E->getSubExpr()))
        return false;
      Result.Designator.setInvalid();
      return true;

    case CK_BaseToDerived:
      if (!Visit(E->getSubExpr()))
        return false;
      if (!CheckValidLValue())
        return false;
      return HandleBaseToDerivedCast(Info, E, Result);
    }
  }

  // FIXME: Missing: __real__, __imag__

};
} // end anonymous namespace

/// Evaluate an expression as an lvalue. This can be legitimately called on
/// expressions which are not glvalues, in a few cases:
///  * function designators in C,
///  * "extern void" objects,
///  * temporaries, if building with -Wno-address-of-temporary.
static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
  assert((E->isGLValue() || E->getType()->isFunctionType() ||
          E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
         "can't evaluate expression as an lvalue");
  return LValueExprEvaluator(Info, Result).Visit(E);
}

bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
    return Success(FD);
  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
    return VisitVarDecl(E, VD);
  return Error(E);
}

bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
  if (!VD->getType()->isReferenceType()) {
    if (isa<ParmVarDecl>(VD)) {
      Result.set(VD, Info.CurrentCall);
      return true;
    }
    return Success(VD);
  }

  CCValue V;
  if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
    return false;
  return Success(V, E);
}

bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
    const MaterializeTemporaryExpr *E) {
  if (E->GetTemporaryExpr()->isRValue()) {
    if (E->getType()->isRecordType() && E->getType()->isLiteralType())
      return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);

    Result.set(E, Info.CurrentCall);
    return EvaluateConstantExpression(Info.CurrentCall->Temporaries[E], Info,
                                      Result, E->GetTemporaryExpr());
  }

  // Materialization of an lvalue temporary occurs when we need to force a copy
  // (for instance, if it's a bitfield).
  // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
  if (!Visit(E->GetTemporaryExpr()))
    return false;
  if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
                                      Info.CurrentCall->Temporaries[E]))
    return false;
  Result.set(E, Info.CurrentCall);
  return true;
}

bool
LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
  // only see this when folding in C, so there's no standard to follow here.
  return Success(E);
}

bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
  // Handle static data members.
  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
    VisitIgnoredValue(E->getBase());
    return VisitVarDecl(E, VD);
  }

  // Handle static member functions.
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
    if (MD->isStatic()) {
      VisitIgnoredValue(E->getBase());
      return Success(MD);
    }
  }

  // Handle non-static data members.
  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
}

bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
  // FIXME: Deal with vectors as array subscript bases.
  if (E->getBase()->getType()->isVectorType())
    return Error(E);

  if (!EvaluatePointer(E->getBase(), Result, Info))
    return false;

  APSInt Index;
  if (!EvaluateInteger(E->getIdx(), Index, Info))
    return false;
  int64_t IndexValue
    = Index.isSigned() ? Index.getSExtValue()
                       : static_cast<int64_t>(Index.getZExtValue());

  // FIXME: In C++11, require the result to be a valid lvalue.
  return HandleLValueArrayAdjustment(Info, Result, E->getType(), IndexValue);
}

bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
  // FIXME: In C++11, require the result to be a valid lvalue.
  return EvaluatePointer(E->getSubExpr(), Result, Info);
}

//===----------------------------------------------------------------------===//
// Pointer Evaluation
//===----------------------------------------------------------------------===//

namespace {
class PointerExprEvaluator
  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
  LValue &Result;

  bool Success(const Expr *E) {
    Result.set(E);
    return true;
  }
public:

  PointerExprEvaluator(EvalInfo &info, LValue &Result)
    : ExprEvaluatorBaseTy(info), Result(Result) {}

  bool Success(const CCValue &V, const Expr *E) {
    Result.setFrom(V);
    return true;
  }
  bool ValueInitialization(const Expr *E) {
    return Success((Expr*)0);
  }

  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitCastExpr(const CastExpr* E);
  bool VisitUnaryAddrOf(const UnaryOperator *E);
  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
      { return Success(E); }
  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
      { return Success(E); }
  bool VisitCallExpr(const CallExpr *E);
  bool VisitBlockExpr(const BlockExpr *E) {
    if (!E->getBlockDecl()->hasCaptures())
      return Success(E);
    return Error(E);
  }
  bool VisitCXXThisExpr(const CXXThisExpr *E) {
    if (!Info.CurrentCall->This)
      return Error(E);
    Result = *Info.CurrentCall->This;
    return true;
  }

  // FIXME: Missing: @protocol, @selector
};
} // end anonymous namespace

static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
  return PointerExprEvaluator(Info, Result).Visit(E);
}

bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->getOpcode() != BO_Add &&
      E->getOpcode() != BO_Sub)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  const Expr *PExp = E->getLHS();
  const Expr *IExp = E->getRHS();
  if (IExp->getType()->isPointerType())
    std::swap(PExp, IExp);

  if (!EvaluatePointer(PExp, Result, Info))
    return false;

  llvm::APSInt Offset;
  if (!EvaluateInteger(IExp, Offset, Info))
    return false;
  int64_t AdditionalOffset
    = Offset.isSigned() ? Offset.getSExtValue()
                        : static_cast<int64_t>(Offset.getZExtValue());
  if (E->getOpcode() == BO_Sub)
    AdditionalOffset = -AdditionalOffset;

  QualType Pointee = PExp->getType()->getAs<PointerType>()->getPointeeType();
  // FIXME: In C++11, require the result to be a valid lvalue.
  return HandleLValueArrayAdjustment(Info, Result, Pointee, AdditionalOffset);
}

bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
  return EvaluateLValue(E->getSubExpr(), Result, Info);
}

bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
  const Expr* SubExpr = E->getSubExpr();

  switch (E->getCastKind()) {
  default:
    break;

  case CK_BitCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
    // permitted in constant expressions in C++11. Bitcasts from cv void* are
    // also static_casts, but we disallow them as a resolution to DR1312.
    if (!E->getType()->isVoidPointerType()) {
      if (SubExpr->getType()->isVoidPointerType())
        CCEDiag(E, diag::note_constexpr_invalid_cast)
          << 3 << SubExpr->getType();
      else
        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
    }
    if (!Visit(SubExpr))
      return false;
    Result.Designator.setInvalid();
    return true;

  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase: {
    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
      return false;
    if (!Result.Base && Result.Offset.isZero())
      return true;

    // Now figure out the necessary offset to add to the base LV to get from
    // the derived class to the base class.
    QualType Type =
        E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();

    for (CastExpr::path_const_iterator PathI = E->path_begin(),
         PathE = E->path_end(); PathI != PathE; ++PathI) {
      if (!HandleLValueBase(Info, Result, Type->getAsCXXRecordDecl(), *PathI))
        return false;
      Type = (*PathI)->getType();
    }

    return true;
  }

  case CK_BaseToDerived:
    if (!Visit(E->getSubExpr()))
      return false;
    if (!Result.Base && Result.Offset.isZero())
      return true;
    return HandleBaseToDerivedCast(Info, E, Result);

  case CK_NullToPointer:
    return ValueInitialization(E);

  case CK_IntegralToPointer: {
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;

    CCValue Value;
    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
      break;

    if (Value.isInt()) {
      unsigned Size = Info.Ctx.getTypeSize(E->getType());
      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
      Result.Base = (Expr*)0;
      Result.Offset = CharUnits::fromQuantity(N);
      Result.Frame = 0;
      Result.Designator.setInvalid();
      return true;
    } else {
      // Cast is of an lvalue, no need to change value.
      Result.setFrom(Value);
      return true;
    }
  }
  case CK_ArrayToPointerDecay:
    if (SubExpr->isGLValue()) {
      if (!EvaluateLValue(SubExpr, Result, Info))
        return false;
    } else {
      Result.set(SubExpr, Info.CurrentCall);
      if (!EvaluateConstantExpression(Info.CurrentCall->Temporaries[SubExpr],
                                      Info, Result, SubExpr))
        return false;
    }
    // The result is a pointer to the first element of the array.
    Result.Designator.addIndex(0);
    return true;

  case CK_FunctionToPointerDecay:
    return EvaluateLValue(SubExpr, Result, Info);
  }

  return ExprEvaluatorBaseTy::VisitCastExpr(E);
}

bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
  if (IsStringLiteralCall(E))
    return Success(E);

  return ExprEvaluatorBaseTy::VisitCallExpr(E);
}

//===----------------------------------------------------------------------===//
// Member Pointer Evaluation
//===----------------------------------------------------------------------===//

namespace {
class MemberPointerExprEvaluator
  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
  MemberPtr &Result;

  bool Success(const ValueDecl *D) {
    Result = MemberPtr(D);
    return true;
  }
public:

  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
    : ExprEvaluatorBaseTy(Info), Result(Result) {}

  bool Success(const CCValue &V, const Expr *E) {
    Result.setFrom(V);
    return true;
  }
  bool ValueInitialization(const Expr *E) {
    return Success((const ValueDecl*)0);
  }

  bool VisitCastExpr(const CastExpr *E);
  bool VisitUnaryAddrOf(const UnaryOperator *E);
};
} // end anonymous namespace

static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
                                  EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isMemberPointerType());
  return MemberPointerExprEvaluator(Info, Result).Visit(E);
}

bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
  switch (E->getCastKind()) {
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_NullToMemberPointer:
    return ValueInitialization(E);

  case CK_BaseToDerivedMemberPointer: {
    if (!Visit(E->getSubExpr()))
      return false;
    if (E->path_empty())
      return true;
    // Base-to-derived member pointer casts store the path in derived-to-base
    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
    // the wrong end of the derived->base arc, so stagger the path by one class.
    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
         PathI != PathE; ++PathI) {
      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
      if (!Result.castToDerived(Derived))
        return Error(E);
    }
    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
      return Error(E);
    return true;
  }

  case CK_DerivedToBaseMemberPointer:
    if (!Visit(E->getSubExpr()))
      return false;
    for (CastExpr::path_const_iterator PathI = E->path_begin(),
         PathE = E->path_end(); PathI != PathE; ++PathI) {
      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
      if (!Result.castToBase(Base))
        return Error(E);
    }
    return true;
  }
}

bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
  // member can be formed.
  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
}

//===----------------------------------------------------------------------===//
// Record Evaluation
//===----------------------------------------------------------------------===//

namespace {
  class RecordExprEvaluator
  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
    const LValue &This;
    APValue &Result;
  public:

    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}

    bool Success(const CCValue &V, const Expr *E) {
      return CheckConstantExpression(Info, E, V, Result);
    }

    bool VisitCastExpr(const CastExpr *E);
    bool VisitInitListExpr(const InitListExpr *E);
    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
  };
}

bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
  switch (E->getCastKind()) {
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_ConstructorConversion:
    return Visit(E->getSubExpr());

  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase: {
    CCValue DerivedObject;
    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
      return false;
    if (!DerivedObject.isStruct())
      return Error(E->getSubExpr());

    // Derived-to-base rvalue conversion: just slice off the derived part.
    APValue *Value = &DerivedObject;
    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
    for (CastExpr::path_const_iterator PathI = E->path_begin(),
         PathE = E->path_end(); PathI != PathE; ++PathI) {
      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
      Value = &Value->getStructBase(getBaseIndex(RD, Base));
      RD = Base;
    }
    Result = *Value;
    return true;
  }
  }
}

bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);

  if (RD->isUnion()) {
    Result = APValue(E->getInitializedFieldInUnion());
    if (!E->getNumInits())
      return true;
    LValue Subobject = This;
    HandleLValueMember(Info, Subobject, E->getInitializedFieldInUnion(),
                       &Layout);
    return EvaluateConstantExpression(Result.getUnionValue(), Info,
                                      Subobject, E->getInit(0));
  }

  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
         "initializer list for class with base classes");
  Result = APValue(APValue::UninitStruct(), 0,
                   std::distance(RD->field_begin(), RD->field_end()));
  unsigned ElementNo = 0;
  for (RecordDecl::field_iterator Field = RD->field_begin(),
       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
    // Anonymous bit-fields are not considered members of the class for
    // purposes of aggregate initialization.
    if (Field->isUnnamedBitfield())
      continue;

    LValue Subobject = This;
    HandleLValueMember(Info, Subobject, *Field, &Layout);

    if (ElementNo < E->getNumInits()) {
      if (!EvaluateConstantExpression(
            Result.getStructField((*Field)->getFieldIndex()),
            Info, Subobject, E->getInit(ElementNo++)))
        return false;
    } else {
      // Perform an implicit value-initialization for members beyond the end of
      // the initializer list.
      ImplicitValueInitExpr VIE(Field->getType());
      if (!EvaluateConstantExpression(
            Result.getStructField((*Field)->getFieldIndex()),
            Info, Subobject, &VIE))
        return false;
    }
  }

  return true;
}

bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
  const CXXConstructorDecl *FD = E->getConstructor();
  const FunctionDecl *Definition = 0;
  FD->getBody(Definition);

  if (!Definition || !Definition->isConstexpr() || Definition->isInvalidDecl())
    return Error(E);

  // FIXME: Elide the copy/move construction wherever we can.
  if (E->isElidable())
    if (const MaterializeTemporaryExpr *ME
          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
      return Visit(ME->GetTemporaryExpr());

  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
  return HandleConstructorCall(E, This, Args,
                               cast<CXXConstructorDecl>(Definition), Info,
                               Result);
}

static bool EvaluateRecord(const Expr *E, const LValue &This,
                           APValue &Result, EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isRecordType() &&
         E->getType()->isLiteralType() &&
         "can't evaluate expression as a record rvalue");
  return RecordExprEvaluator(Info, This, Result).Visit(E);
}

//===----------------------------------------------------------------------===//
// Temporary Evaluation
//
// Temporaries are represented in the AST as rvalues, but generally behave like
// lvalues. The full-object of which the temporary is a subobject is implicitly
// materialized so that a reference can bind to it.
//===----------------------------------------------------------------------===//
namespace {
class TemporaryExprEvaluator
  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
public:
  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
    LValueExprEvaluatorBaseTy(Info, Result) {}

  /// Visit an expression which constructs the value of this temporary.
  bool VisitConstructExpr(const Expr *E) {
    Result.set(E, Info.CurrentCall);
    return EvaluateConstantExpression(Info.CurrentCall->Temporaries[E], Info,
                                      Result, E);
  }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);

    case CK_ConstructorConversion:
      return VisitConstructExpr(E->getSubExpr());
    }
  }
  bool VisitInitListExpr(const InitListExpr *E) {
    return VisitConstructExpr(E);
  }
  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
    return VisitConstructExpr(E);
  }
  bool VisitCallExpr(const CallExpr *E) {
    return VisitConstructExpr(E);
  }
};
} // end anonymous namespace

/// Evaluate an expression of record type as a temporary.
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isRecordType() &&
         E->getType()->isLiteralType());
  return TemporaryExprEvaluator(Info, Result).Visit(E);
}

//===----------------------------------------------------------------------===//
// Vector Evaluation
//===----------------------------------------------------------------------===//

namespace {
  class VectorExprEvaluator
  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
    APValue &Result;
  public:

    VectorExprEvaluator(EvalInfo &info, APValue &Result)
      : ExprEvaluatorBaseTy(info), Result(Result) {}

    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
      // FIXME: remove this APValue copy.
      Result = APValue(V.data(), V.size());
      return true;
    }
    bool Success(const CCValue &V, const Expr *E) {
      assert(V.isVector());
      Result = V;
      return true;
    }
    bool ValueInitialization(const Expr *E);

    bool VisitUnaryReal(const UnaryOperator *E)
      { return Visit(E->getSubExpr()); }
    bool VisitCastExpr(const CastExpr* E);
    bool VisitInitListExpr(const InitListExpr *E);
    bool VisitUnaryImag(const UnaryOperator *E);
    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
    //                 binary comparisons, binary and/or/xor,
    //                 shufflevector, ExtVectorElementExpr
    //        (Note that these require implementing conversions
    //         between vector types.)
  };
} // end anonymous namespace

static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
  return VectorExprEvaluator(Info, Result).Visit(E);
}

bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
  const VectorType *VTy = E->getType()->castAs<VectorType>();
  unsigned NElts = VTy->getNumElements();

  const Expr *SE = E->getSubExpr();
  QualType SETy = SE->getType();

  switch (E->getCastKind()) {
  case CK_VectorSplat: {
    APValue Val = APValue();
    if (SETy->isIntegerType()) {
      APSInt IntResult;
      if (!EvaluateInteger(SE, IntResult, Info))
         return false;
      Val = APValue(IntResult);
    } else if (SETy->isRealFloatingType()) {
       APFloat F(0.0);
       if (!EvaluateFloat(SE, F, Info))
         return false;
       Val = APValue(F);
    } else {
      return Error(E);
    }

    // Splat and create vector APValue.
    SmallVector<APValue, 4> Elts(NElts, Val);
    return Success(Elts, E);
  }
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
  }
}

bool
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
  const VectorType *VT = E->getType()->castAs<VectorType>();
  unsigned NumInits = E->getNumInits();
  unsigned NumElements = VT->getNumElements();

  QualType EltTy = VT->getElementType();
  SmallVector<APValue, 4> Elements;

  // If a vector is initialized with a single element, that value
  // becomes every element of the vector, not just the first.
  // This is the behavior described in the IBM AltiVec documentation.
  if (NumInits == 1) {

    // Handle the case where the vector is initialized by another
    // vector (OpenCL 6.1.6).
    if (E->getInit(0)->getType()->isVectorType())
      return Visit(E->getInit(0));

    APValue InitValue;
    if (EltTy->isIntegerType()) {
      llvm::APSInt sInt(32);
      if (!EvaluateInteger(E->getInit(0), sInt, Info))
        return false;
      InitValue = APValue(sInt);
    } else {
      llvm::APFloat f(0.0);
      if (!EvaluateFloat(E->getInit(0), f, Info))
        return false;
      InitValue = APValue(f);
    }
    for (unsigned i = 0; i < NumElements; i++) {
      Elements.push_back(InitValue);
    }
  } else {
    for (unsigned i = 0; i < NumElements; i++) {
      if (EltTy->isIntegerType()) {
        llvm::APSInt sInt(32);
        if (i < NumInits) {
          if (!EvaluateInteger(E->getInit(i), sInt, Info))
            return false;
        } else {
          sInt = Info.Ctx.MakeIntValue(0, EltTy);
        }
        Elements.push_back(APValue(sInt));
      } else {
        llvm::APFloat f(0.0);
        if (i < NumInits) {
          if (!EvaluateFloat(E->getInit(i), f, Info))
            return false;
        } else {
          f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
        }
        Elements.push_back(APValue(f));
      }
    }
  }
  return Success(Elements, E);
}

bool
VectorExprEvaluator::ValueInitialization(const Expr *E) {
  const VectorType *VT = E->getType()->getAs<VectorType>();
  QualType EltTy = VT->getElementType();
  APValue ZeroElement;
  if (EltTy->isIntegerType())
    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
  else
    ZeroElement =
        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));

  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
  return Success(Elements, E);
}

bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
  VisitIgnoredValue(E->getSubExpr());
  return ValueInitialization(E);
}

//===----------------------------------------------------------------------===//
// Array Evaluation
//===----------------------------------------------------------------------===//

namespace {
  class ArrayExprEvaluator
  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
    const LValue &This;
    APValue &Result;
  public:

    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}

    bool Success(const APValue &V, const Expr *E) {
      assert(V.isArray() && "Expected array type");
      Result = V;
      return true;
    }

    bool ValueInitialization(const Expr *E) {
      const ConstantArrayType *CAT =
          Info.Ctx.getAsConstantArrayType(E->getType());
      if (!CAT)
        return Error(E);

      Result = APValue(APValue::UninitArray(), 0,
                       CAT->getSize().getZExtValue());
      if (!Result.hasArrayFiller()) return true;

      // Value-initialize all elements.
      LValue Subobject = This;
      Subobject.Designator.addIndex(0);
      ImplicitValueInitExpr VIE(CAT->getElementType());
      return EvaluateConstantExpression(Result.getArrayFiller(), Info,
                                        Subobject, &VIE);
    }

    bool VisitInitListExpr(const InitListExpr *E);
    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
  };
} // end anonymous namespace

static bool EvaluateArray(const Expr *E, const LValue &This,
                          APValue &Result, EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isArrayType() &&
         E->getType()->isLiteralType() && "not a literal array rvalue");
  return ArrayExprEvaluator(Info, This, Result).Visit(E);
}

bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
  if (!CAT)
    return Error(E);

  Result = APValue(APValue::UninitArray(), E->getNumInits(),
                   CAT->getSize().getZExtValue());
  LValue Subobject = This;
  Subobject.Designator.addIndex(0);
  unsigned Index = 0;
  for (InitListExpr::const_iterator I = E->begin(), End = E->end();
       I != End; ++I, ++Index) {
    if (!EvaluateConstantExpression(Result.getArrayInitializedElt(Index),
                                    Info, Subobject, cast<Expr>(*I)))
      return false;
    if (!HandleLValueArrayAdjustment(Info, Subobject, CAT->getElementType(), 1))
      return false;
  }

  if (!Result.hasArrayFiller()) return true;
  assert(E->hasArrayFiller() && "no array filler for incomplete init list");
  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
  // but sometimes does:
  //   struct S { constexpr S() : p(&p) {} void *p; };
  //   S s[10] = {};
  return EvaluateConstantExpression(Result.getArrayFiller(), Info,
                                    Subobject, E->getArrayFiller());
}

bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
  if (!CAT)
    return Error(E);

  Result = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
  if (!Result.hasArrayFiller())
    return true;

  const CXXConstructorDecl *FD = E->getConstructor();
  const FunctionDecl *Definition = 0;
  FD->getBody(Definition);

  if (!Definition || !Definition->isConstexpr() || Definition->isInvalidDecl())
    return Error(E);

  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
  // but sometimes does:
  //   struct S { constexpr S() : p(&p) {} void *p; };
  //   S s[10];
  LValue Subobject = This;
  Subobject.Designator.addIndex(0);
  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
  return HandleConstructorCall(E, Subobject, Args,
                               cast<CXXConstructorDecl>(Definition),
                               Info, Result.getArrayFiller());
}

//===----------------------------------------------------------------------===//
// Integer Evaluation
//
// As a GNU extension, we support casting pointers to sufficiently-wide integer
// types and back in constant folding. Integer values are thus represented
// either as an integer-valued APValue, or as an lvalue-valued APValue.
//===----------------------------------------------------------------------===//

namespace {
class IntExprEvaluator
  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
  CCValue &Result;
public:
  IntExprEvaluator(EvalInfo &info, CCValue &result)
    : ExprEvaluatorBaseTy(info), Result(result) {}

  bool Success(const llvm::APSInt &SI, const Expr *E) {
    assert(E->getType()->isIntegralOrEnumerationType() &&
           "Invalid evaluation result.");
    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
           "Invalid evaluation result.");
    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
           "Invalid evaluation result.");
    Result = CCValue(SI);
    return true;
  }

  bool Success(const llvm::APInt &I, const Expr *E) {
    assert(E->getType()->isIntegralOrEnumerationType() && 
           "Invalid evaluation result.");
    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
           "Invalid evaluation result.");
    Result = CCValue(APSInt(I));
    Result.getInt().setIsUnsigned(
                            E->getType()->isUnsignedIntegerOrEnumerationType());
    return true;
  }

  bool Success(uint64_t Value, const Expr *E) {
    assert(E->getType()->isIntegralOrEnumerationType() && 
           "Invalid evaluation result.");
    Result = CCValue(Info.Ctx.MakeIntValue(Value, E->getType()));
    return true;
  }

  bool Success(CharUnits Size, const Expr *E) {
    return Success(Size.getQuantity(), E);
  }

  bool Success(const CCValue &V, const Expr *E) {
    if (V.isLValue()) {
      Result = V;
      return true;
    }
    return Success(V.getInt(), E);
  }

  bool ValueInitialization(const Expr *E) { return Success(0, E); }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  bool VisitIntegerLiteral(const IntegerLiteral *E) {
    return Success(E->getValue(), E);
  }
  bool VisitCharacterLiteral(const CharacterLiteral *E) {
    return Success(E->getValue(), E);
  }

  bool CheckReferencedDecl(const Expr *E, const Decl *D);
  bool VisitDeclRefExpr(const DeclRefExpr *E) {
    if (CheckReferencedDecl(E, E->getDecl()))
      return true;

    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
  }
  bool VisitMemberExpr(const MemberExpr *E) {
    if (CheckReferencedDecl(E, E->getMemberDecl())) {
      VisitIgnoredValue(E->getBase());
      return true;
    }

    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
  }

  bool VisitCallExpr(const CallExpr *E);
  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
  bool VisitUnaryOperator(const UnaryOperator *E);

  bool VisitCastExpr(const CastExpr* E);
  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);

  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    return Success(E->getValue(), E);
  }

  // Note, GNU defines __null as an integer, not a pointer.
  bool VisitGNUNullExpr(const GNUNullExpr *E) {
    return ValueInitialization(E);
  }

  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitUnaryReal(const UnaryOperator *E);
  bool VisitUnaryImag(const UnaryOperator *E);

  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);

private:
  CharUnits GetAlignOfExpr(const Expr *E);
  CharUnits GetAlignOfType(QualType T);
  static QualType GetObjectType(APValue::LValueBase B);
  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
  // FIXME: Missing: array subscript of vector, member of vector
};
} // end anonymous namespace

/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
/// produce either the integer value or a pointer.
///
/// GCC has a heinous extension which folds casts between pointer types and
/// pointer-sized integral types. We support this by allowing the evaluation of
/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
/// Some simple arithmetic on such values is supported (they are treated much
/// like char*).
static bool EvaluateIntegerOrLValue(const Expr *E, CCValue &Result,
                                    EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
  return IntExprEvaluator(Info, Result).Visit(E);
}

static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
  CCValue Val;
  if (!EvaluateIntegerOrLValue(E, Val, Info))
    return false;
  if (!Val.isInt()) {
    // FIXME: It would be better to produce the diagnostic for casting
    //        a pointer to an integer.
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }
  Result = Val.getInt();
  return true;
}

/// Check whether the given declaration can be directly converted to an integral
/// rvalue. If not, no diagnostic is produced; there are other things we can
/// try.
bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
  // Enums are integer constant exprs.
  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
    // Check for signedness/width mismatches between E type and ECD value.
    bool SameSign = (ECD->getInitVal().isSigned()
                     == E->getType()->isSignedIntegerOrEnumerationType());
    bool SameWidth = (ECD->getInitVal().getBitWidth()
                      == Info.Ctx.getIntWidth(E->getType()));
    if (SameSign && SameWidth)
      return Success(ECD->getInitVal(), E);
    else {
      // Get rid of mismatch (otherwise Success assertions will fail)
      // by computing a new value matching the type of E.
      llvm::APSInt Val = ECD->getInitVal();
      if (!SameSign)
        Val.setIsSigned(!ECD->getInitVal().isSigned());
      if (!SameWidth)
        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
      return Success(Val, E);
    }
  }
  return false;
}

/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
/// as GCC.
static int EvaluateBuiltinClassifyType(const CallExpr *E) {
  // The following enum mimics the values returned by GCC.
  // FIXME: Does GCC differ between lvalue and rvalue references here?
  enum gcc_type_class {
    no_type_class = -1,
    void_type_class, integer_type_class, char_type_class,
    enumeral_type_class, boolean_type_class,
    pointer_type_class, reference_type_class, offset_type_class,
    real_type_class, complex_type_class,
    function_type_class, method_type_class,
    record_type_class, union_type_class,
    array_type_class, string_type_class,
    lang_type_class
  };

  // If no argument was supplied, default to "no_type_class". This isn't
  // ideal, however it is what gcc does.
  if (E->getNumArgs() == 0)
    return no_type_class;

  QualType ArgTy = E->getArg(0)->getType();
  if (ArgTy->isVoidType())
    return void_type_class;
  else if (ArgTy->isEnumeralType())
    return enumeral_type_class;
  else if (ArgTy->isBooleanType())
    return boolean_type_class;
  else if (ArgTy->isCharType())
    return string_type_class; // gcc doesn't appear to use char_type_class
  else if (ArgTy->isIntegerType())
    return integer_type_class;
  else if (ArgTy->isPointerType())
    return pointer_type_class;
  else if (ArgTy->isReferenceType())
    return reference_type_class;
  else if (ArgTy->isRealType())
    return real_type_class;
  else if (ArgTy->isComplexType())
    return complex_type_class;
  else if (ArgTy->isFunctionType())
    return function_type_class;
  else if (ArgTy->isStructureOrClassType())
    return record_type_class;
  else if (ArgTy->isUnionType())
    return union_type_class;
  else if (ArgTy->isArrayType())
    return array_type_class;
  else if (ArgTy->isUnionType())
    return union_type_class;
  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
  return -1;
}

/// Retrieves the "underlying object type" of the given expression,
/// as used by __builtin_object_size.
QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
      return VD->getType();
  } else if (const Expr *E = B.get<const Expr*>()) {
    if (isa<CompoundLiteralExpr>(E))
      return E->getType();
  }

  return QualType();
}

bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
  // TODO: Perhaps we should let LLVM lower this?
  LValue Base;
  if (!EvaluatePointer(E->getArg(0), Base, Info))
    return false;

  // If we can prove the base is null, lower to zero now.
  if (!Base.getLValueBase()) return Success(0, E);

  QualType T = GetObjectType(Base.getLValueBase());
  if (T.isNull() ||
      T->isIncompleteType() ||
      T->isFunctionType() ||
      T->isVariablyModifiedType() ||
      T->isDependentType())
    return Error(E);

  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
  CharUnits Offset = Base.getLValueOffset();

  if (!Offset.isNegative() && Offset <= Size)
    Size -= Offset;
  else
    Size = CharUnits::Zero();
  return Success(Size, E);
}

bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
  switch (E->isBuiltinCall()) {
  default:
    return ExprEvaluatorBaseTy::VisitCallExpr(E);

  case Builtin::BI__builtin_object_size: {
    if (TryEvaluateBuiltinObjectSize(E))
      return true;

    // If evaluating the argument has side-effects we can't determine
    // the size of the object and lower it to unknown now.
    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
        return Success(-1ULL, E);
      return Success(0, E);
    }

    return Error(E);
  }

  case Builtin::BI__builtin_classify_type:
    return Success(EvaluateBuiltinClassifyType(E), E);

  case Builtin::BI__builtin_constant_p: {
    const Expr *Arg = E->getArg(0);
    QualType ArgType = Arg->getType();
    // __builtin_constant_p always has one operand. The rules which gcc follows
    // are not precisely documented, but are as follows:
    //
    //  - If the operand is of integral, floating, complex or enumeration type,
    //    and can be folded to a known value of that type, it returns 1.
    //  - If the operand and can be folded to a pointer to the first character
    //    of a string literal (or such a pointer cast to an integral type), it
    //    returns 1.
    //
    // Otherwise, it returns 0.
    //
    // FIXME: GCC also intends to return 1 for literals of aggregate types, but
    // its support for this does not currently work.
    int IsConstant = 0;
    if (ArgType->isIntegralOrEnumerationType()) {
      // Note, a pointer cast to an integral type is only a constant if it is
      // a pointer to the first character of a string literal.
      Expr::EvalResult Result;
      if (Arg->EvaluateAsRValue(Result, Info.Ctx) && !Result.HasSideEffects) {
        APValue &V = Result.Val;
        if (V.getKind() == APValue::LValue) {
          if (const Expr *E = V.getLValueBase().dyn_cast<const Expr*>())
            IsConstant = isa<StringLiteral>(E) && V.getLValueOffset().isZero();
        } else {
          IsConstant = 1;
        }
      }
    } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
      IsConstant = Arg->isEvaluatable(Info.Ctx);
    } else if (ArgType->isPointerType() || Arg->isGLValue()) {
      LValue LV;
      // Use a separate EvalInfo: ignore constexpr parameter and 'this' bindings
      // during the check.
      Expr::EvalStatus Status;
      EvalInfo SubInfo(Info.Ctx, Status);
      if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, SubInfo)
                            : EvaluatePointer(Arg, LV, SubInfo)) &&
          !Status.HasSideEffects)
        if (const Expr *E = LV.getLValueBase().dyn_cast<const Expr*>())
          IsConstant = isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
    }

    return Success(IsConstant, E);
  }
  case Builtin::BI__builtin_eh_return_data_regno: {
    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
    return Success(Operand, E);
  }

  case Builtin::BI__builtin_expect:
    return Visit(E->getArg(0));
      
  case Builtin::BIstrlen:
  case Builtin::BI__builtin_strlen:
    // As an extension, we support strlen() and __builtin_strlen() as constant
    // expressions when the argument is a string literal.
    if (const StringLiteral *S
               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
      // The string literal may have embedded null characters. Find the first
      // one and truncate there.
      StringRef Str = S->getString();
      StringRef::size_type Pos = Str.find(0);
      if (Pos != StringRef::npos)
        Str = Str.substr(0, Pos);
      
      return Success(Str.size(), E);
    }
      
    return Error(E);

  case Builtin::BI__atomic_is_lock_free: {
    APSInt SizeVal;
    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
      return false;

    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
    // of two less than the maximum inline atomic width, we know it is
    // lock-free.  If the size isn't a power of two, or greater than the
    // maximum alignment where we promote atomics, we know it is not lock-free
    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
    // the answer can only be determined at runtime; for example, 16-byte
    // atomics have lock-free implementations on some, but not all,
    // x86-64 processors.

    // Check power-of-two.
    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
    if (!Size.isPowerOfTwo())
#if 0
      // FIXME: Suppress this folding until the ABI for the promotion width
      // settles.
      return Success(0, E);
#else
      return Error(E);
#endif

#if 0
    // Check against promotion width.
    // FIXME: Suppress this folding until the ABI for the promotion width
    // settles.
    unsigned PromoteWidthBits =
        Info.Ctx.getTargetInfo().getMaxAtomicPromoteWidth();
    if (Size > Info.Ctx.toCharUnitsFromBits(PromoteWidthBits))
      return Success(0, E);
#endif

    // Check against inlining width.
    unsigned InlineWidthBits =
        Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
    if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits))
      return Success(1, E);

    return Error(E);
  }
  }
}

static bool HasSameBase(const LValue &A, const LValue &B) {
  if (!A.getLValueBase())
    return !B.getLValueBase();
  if (!B.getLValueBase())
    return false;

  if (A.getLValueBase().getOpaqueValue() !=
      B.getLValueBase().getOpaqueValue()) {
    const Decl *ADecl = GetLValueBaseDecl(A);
    if (!ADecl)
      return false;
    const Decl *BDecl = GetLValueBaseDecl(B);
    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
      return false;
  }

  return IsGlobalLValue(A.getLValueBase()) ||
         A.getLValueFrame() == B.getLValueFrame();
}

bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->isAssignmentOp())
    return Error(E);

  if (E->getOpcode() == BO_Comma) {
    VisitIgnoredValue(E->getLHS());
    return Visit(E->getRHS());
  }

  if (E->isLogicalOp()) {
    // These need to be handled specially because the operands aren't
    // necessarily integral
    bool lhsResult, rhsResult;

    if (EvaluateAsBooleanCondition(E->getLHS(), lhsResult, Info)) {
      // We were able to evaluate the LHS, see if we can get away with not
      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
      if (lhsResult == (E->getOpcode() == BO_LOr))
        return Success(lhsResult, E);

      if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
        if (E->getOpcode() == BO_LOr)
          return Success(lhsResult || rhsResult, E);
        else
          return Success(lhsResult && rhsResult, E);
      }
    } else {
      // FIXME: If both evaluations fail, we should produce the diagnostic from
      // the LHS. If the LHS is non-constant and the RHS is unevaluatable, it's
      // less clear how to diagnose this.
      if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
        // We can't evaluate the LHS; however, sometimes the result
        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
        if (rhsResult == (E->getOpcode() == BO_LOr)) {
          // Since we weren't able to evaluate the left hand side, it
          // must have had side effects.
          Info.EvalStatus.HasSideEffects = true;

          return Success(rhsResult, E);
        }
      }
    }

    return false;
  }

  QualType LHSTy = E->getLHS()->getType();
  QualType RHSTy = E->getRHS()->getType();

  if (LHSTy->isAnyComplexType()) {
    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
    ComplexValue LHS, RHS;

    if (!EvaluateComplex(E->getLHS(), LHS, Info))
      return false;

    if (!EvaluateComplex(E->getRHS(), RHS, Info))
      return false;

    if (LHS.isComplexFloat()) {
      APFloat::cmpResult CR_r =
        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
      APFloat::cmpResult CR_i =
        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());

      if (E->getOpcode() == BO_EQ)
        return Success((CR_r == APFloat::cmpEqual &&
                        CR_i == APFloat::cmpEqual), E);
      else {
        assert(E->getOpcode() == BO_NE &&
               "Invalid complex comparison.");
        return Success(((CR_r == APFloat::cmpGreaterThan ||
                         CR_r == APFloat::cmpLessThan ||
                         CR_r == APFloat::cmpUnordered) ||
                        (CR_i == APFloat::cmpGreaterThan ||
                         CR_i == APFloat::cmpLessThan ||
                         CR_i == APFloat::cmpUnordered)), E);
      }
    } else {
      if (E->getOpcode() == BO_EQ)
        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
      else {
        assert(E->getOpcode() == BO_NE &&
               "Invalid compex comparison.");
        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
      }
    }
  }

  if (LHSTy->isRealFloatingType() &&
      RHSTy->isRealFloatingType()) {
    APFloat RHS(0.0), LHS(0.0);

    if (!EvaluateFloat(E->getRHS(), RHS, Info))
      return false;

    if (!EvaluateFloat(E->getLHS(), LHS, Info))
      return false;

    APFloat::cmpResult CR = LHS.compare(RHS);

    switch (E->getOpcode()) {
    default:
      llvm_unreachable("Invalid binary operator!");
    case BO_LT:
      return Success(CR == APFloat::cmpLessThan, E);
    case BO_GT:
      return Success(CR == APFloat::cmpGreaterThan, E);
    case BO_LE:
      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
    case BO_GE:
      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
                     E);
    case BO_EQ:
      return Success(CR == APFloat::cmpEqual, E);
    case BO_NE:
      return Success(CR == APFloat::cmpGreaterThan
                     || CR == APFloat::cmpLessThan
                     || CR == APFloat::cmpUnordered, E);
    }
  }

  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
      LValue LHSValue;
      if (!EvaluatePointer(E->getLHS(), LHSValue, Info))
        return false;

      LValue RHSValue;
      if (!EvaluatePointer(E->getRHS(), RHSValue, Info))
        return false;

      // Reject differing bases from the normal codepath; we special-case
      // comparisons to null.
      if (!HasSameBase(LHSValue, RHSValue)) {
        // Inequalities and subtractions between unrelated pointers have
        // unspecified or undefined behavior.
        if (!E->isEqualityOp())
          return Error(E);
        // A constant address may compare equal to the address of a symbol.
        // The one exception is that address of an object cannot compare equal
        // to a null pointer constant.
        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
            (!RHSValue.Base && !RHSValue.Offset.isZero()))
          return Error(E);
        // It's implementation-defined whether distinct literals will have
        // distinct addresses. In clang, we do not guarantee the addresses are
        // distinct. However, we do know that the address of a literal will be
        // non-null.
        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
            LHSValue.Base && RHSValue.Base)
          return Error(E);
        // We can't tell whether weak symbols will end up pointing to the same
        // object.
        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
          return Error(E);
        // Pointers with different bases cannot represent the same object.
        // (Note that clang defaults to -fmerge-all-constants, which can
        // lead to inconsistent results for comparisons involving the address
        // of a constant; this generally doesn't matter in practice.)
        return Success(E->getOpcode() == BO_NE, E);
      }

      // FIXME: Implement the C++11 restrictions:
      //  - Pointer subtractions must be on elements of the same array.
      //  - Pointer comparisons must be between members with the same access.

      if (E->getOpcode() == BO_Sub) {
        QualType Type = E->getLHS()->getType();
        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();

        CharUnits ElementSize;
        if (!HandleSizeof(Info, ElementType, ElementSize))
          return false;

        CharUnits Diff = LHSValue.getLValueOffset() -
                             RHSValue.getLValueOffset();
        return Success(Diff / ElementSize, E);
      }

      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
      switch (E->getOpcode()) {
      default: llvm_unreachable("missing comparison operator");
      case BO_LT: return Success(LHSOffset < RHSOffset, E);
      case BO_GT: return Success(LHSOffset > RHSOffset, E);
      case BO_LE: return Success(LHSOffset <= RHSOffset, E);
      case BO_GE: return Success(LHSOffset >= RHSOffset, E);
      case BO_EQ: return Success(LHSOffset == RHSOffset, E);
      case BO_NE: return Success(LHSOffset != RHSOffset, E);
      }
    }
  }
  if (!LHSTy->isIntegralOrEnumerationType() ||
      !RHSTy->isIntegralOrEnumerationType()) {
    // We can't continue from here for non-integral types.
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
  }

  // The LHS of a constant expr is always evaluated and needed.
  CCValue LHSVal;
  if (!EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info))
    return false;

  if (!Visit(E->getRHS()))
    return false;
  CCValue &RHSVal = Result;

  // Handle cases like (unsigned long)&a + 4.
  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
    CharUnits AdditionalOffset = CharUnits::fromQuantity(
                                     RHSVal.getInt().getZExtValue());
    if (E->getOpcode() == BO_Add)
      LHSVal.getLValueOffset() += AdditionalOffset;
    else
      LHSVal.getLValueOffset() -= AdditionalOffset;
    Result = LHSVal;
    return true;
  }

  // Handle cases like 4 + (unsigned long)&a
  if (E->getOpcode() == BO_Add &&
        RHSVal.isLValue() && LHSVal.isInt()) {
    RHSVal.getLValueOffset() += CharUnits::fromQuantity(
                                    LHSVal.getInt().getZExtValue());
    // Note that RHSVal is Result.
    return true;
  }

  // All the following cases expect both operands to be an integer
  if (!LHSVal.isInt() || !RHSVal.isInt())
    return Error(E);

  APSInt &LHS = LHSVal.getInt();
  APSInt &RHS = RHSVal.getInt();

  switch (E->getOpcode()) {
  default:
    return Error(E);
  case BO_Mul: return Success(LHS * RHS, E);
  case BO_Add: return Success(LHS + RHS, E);
  case BO_Sub: return Success(LHS - RHS, E);
  case BO_And: return Success(LHS & RHS, E);
  case BO_Xor: return Success(LHS ^ RHS, E);
  case BO_Or:  return Success(LHS | RHS, E);
  case BO_Div:
    if (RHS == 0)
      return Error(E, diag::note_expr_divide_by_zero);
    return Success(LHS / RHS, E);
  case BO_Rem:
    if (RHS == 0)
      return Error(E, diag::note_expr_divide_by_zero);
    return Success(LHS % RHS, E);
  case BO_Shl: {
    // During constant-folding, a negative shift is an opposite shift.
    if (RHS.isSigned() && RHS.isNegative()) {
      RHS = -RHS;
      goto shift_right;
    }

  shift_left:
    unsigned SA
      = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
    return Success(LHS << SA, E);
  }
  case BO_Shr: {
    // During constant-folding, a negative shift is an opposite shift.
    if (RHS.isSigned() && RHS.isNegative()) {
      RHS = -RHS;
      goto shift_left;
    }

  shift_right:
    unsigned SA =
      (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
    return Success(LHS >> SA, E);
  }

  case BO_LT: return Success(LHS < RHS, E);
  case BO_GT: return Success(LHS > RHS, E);
  case BO_LE: return Success(LHS <= RHS, E);
  case BO_GE: return Success(LHS >= RHS, E);
  case BO_EQ: return Success(LHS == RHS, E);
  case BO_NE: return Success(LHS != RHS, E);
  }
}

CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
  //   the result is the size of the referenced type."
  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
  //   result shall be the alignment of the referenced type."
  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
    T = Ref->getPointeeType();

  // __alignof is defined to return the preferred alignment.
  return Info.Ctx.toCharUnitsFromBits(
    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
}

CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
  E = E->IgnoreParens();

  // alignof decl is always accepted, even if it doesn't make sense: we default
  // to 1 in those cases.
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    return Info.Ctx.getDeclAlign(DRE->getDecl(), 
                                 /*RefAsPointee*/true);

  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
                                 /*RefAsPointee*/true);

  return GetAlignOfType(E->getType());
}


/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
/// a result as the expression's type.
bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
                                    const UnaryExprOrTypeTraitExpr *E) {
  switch(E->getKind()) {
  case UETT_AlignOf: {
    if (E->isArgumentType())
      return Success(GetAlignOfType(E->getArgumentType()), E);
    else
      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
  }

  case UETT_VecStep: {
    QualType Ty = E->getTypeOfArgument();

    if (Ty->isVectorType()) {
      unsigned n = Ty->getAs<VectorType>()->getNumElements();

      // The vec_step built-in functions that take a 3-component
      // vector return 4. (OpenCL 1.1 spec 6.11.12)
      if (n == 3)
        n = 4;

      return Success(n, E);
    } else
      return Success(1, E);
  }

  case UETT_SizeOf: {
    QualType SrcTy = E->getTypeOfArgument();
    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
    //   the result is the size of the referenced type."
    // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
    //   result shall be the alignment of the referenced type."
    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
      SrcTy = Ref->getPointeeType();

    CharUnits Sizeof;
    if (!HandleSizeof(Info, SrcTy, Sizeof))
      return false;
    return Success(Sizeof, E);
  }
  }

  llvm_unreachable("unknown expr/type trait");
  return Error(E);
}

bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
  CharUnits Result;
  unsigned n = OOE->getNumComponents();
  if (n == 0)
    return Error(OOE);
  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
  for (unsigned i = 0; i != n; ++i) {
    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
    switch (ON.getKind()) {
    case OffsetOfExpr::OffsetOfNode::Array: {
      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
      APSInt IdxResult;
      if (!EvaluateInteger(Idx, IdxResult, Info))
        return false;
      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
      if (!AT)
        return Error(OOE);
      CurrentType = AT->getElementType();
      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
      Result += IdxResult.getSExtValue() * ElementSize;
        break;
    }

    case OffsetOfExpr::OffsetOfNode::Field: {
      FieldDecl *MemberDecl = ON.getField();
      const RecordType *RT = CurrentType->getAs<RecordType>();
      if (!RT)
        return Error(OOE);
      RecordDecl *RD = RT->getDecl();
      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
      unsigned i = MemberDecl->getFieldIndex();
      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
      CurrentType = MemberDecl->getType().getNonReferenceType();
      break;
    }

    case OffsetOfExpr::OffsetOfNode::Identifier:
      llvm_unreachable("dependent __builtin_offsetof");
      return Error(OOE);

    case OffsetOfExpr::OffsetOfNode::Base: {
      CXXBaseSpecifier *BaseSpec = ON.getBase();
      if (BaseSpec->isVirtual())
        return Error(OOE);

      // Find the layout of the class whose base we are looking into.
      const RecordType *RT = CurrentType->getAs<RecordType>();
      if (!RT)
        return Error(OOE);
      RecordDecl *RD = RT->getDecl();
      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);

      // Find the base class itself.
      CurrentType = BaseSpec->getType();
      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
      if (!BaseRT)
        return Error(OOE);
      
      // Add the offset to the base.
      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
      break;
    }
    }
  }
  return Success(Result, OOE);
}

bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  switch (E->getOpcode()) {
  default:
    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
    // See C99 6.6p3.
    return Error(E);
  case UO_Extension:
    // FIXME: Should extension allow i-c-e extension expressions in its scope?
    // If so, we could clear the diagnostic ID.
    return Visit(E->getSubExpr());
  case UO_Plus:
    // The result is just the value.
    return Visit(E->getSubExpr());
  case UO_Minus: {
    if (!Visit(E->getSubExpr()))
      return false;
    if (!Result.isInt()) return Error(E);
    return Success(-Result.getInt(), E);
  }
  case UO_Not: {
    if (!Visit(E->getSubExpr()))
      return false;
    if (!Result.isInt()) return Error(E);
    return Success(~Result.getInt(), E);
  }
  case UO_LNot: {
    bool bres;
    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
      return false;
    return Success(!bres, E);
  }
  }
}

/// HandleCast - This is used to evaluate implicit or explicit casts where the
/// result type is integer.
bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
  const Expr *SubExpr = E->getSubExpr();
  QualType DestType = E->getType();
  QualType SrcType = SubExpr->getType();

  switch (E->getCastKind()) {
  case CK_BaseToDerived:
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_Dynamic:
  case CK_ToUnion:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToPointer:
  case CK_NullToMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer:
  case CK_ConstructorConversion:
  case CK_IntegralToPointer:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralToFloating:
  case CK_FloatingCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingRealToComplex:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
    llvm_unreachable("invalid cast kind for integral value");

  case CK_BitCast:
  case CK_Dependent:
  case CK_LValueBitCast:
  case CK_UserDefinedConversion:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
    return Error(E);

  case CK_LValueToRValue:
  case CK_NoOp:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_MemberPointerToBoolean:
  case CK_PointerToBoolean:
  case CK_IntegralToBoolean:
  case CK_FloatingToBoolean:
  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToBoolean: {
    bool BoolResult;
    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
      return false;
    return Success(BoolResult, E);
  }

  case CK_IntegralCast: {
    if (!Visit(SubExpr))
      return false;

    if (!Result.isInt()) {
      // Only allow casts of lvalues if they are lossless.
      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
    }

    return Success(HandleIntToIntCast(DestType, SrcType,
                                      Result.getInt(), Info.Ctx), E);
  }

  case CK_PointerToIntegral: {
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;

    LValue LV;
    if (!EvaluatePointer(SubExpr, LV, Info))
      return false;

    if (LV.getLValueBase()) {
      // Only allow based lvalue casts if they are lossless.
      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
        return Error(E);

      LV.Designator.setInvalid();
      LV.moveInto(Result);
      return true;
    }

    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(), 
                                         SrcType);
    return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E);
  }

  case CK_IntegralComplexToReal: {
    ComplexValue C;
    if (!EvaluateComplex(SubExpr, C, Info))
      return false;
    return Success(C.getComplexIntReal(), E);
  }

  case CK_FloatingToIntegral: {
    APFloat F(0.0);
    if (!EvaluateFloat(SubExpr, F, Info))
      return false;

    return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E);
  }
  }

  llvm_unreachable("unknown cast resulting in integral value");
  return Error(E);
}

bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
    ComplexValue LV;
    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
      return false;
    if (!LV.isComplexInt())
      return Error(E);
    return Success(LV.getComplexIntReal(), E);
  }

  return Visit(E->getSubExpr());
}

bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
    ComplexValue LV;
    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
      return false;
    if (!LV.isComplexInt())
      return Error(E);
    return Success(LV.getComplexIntImag(), E);
  }

  VisitIgnoredValue(E->getSubExpr());
  return Success(0, E);
}

bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
  return Success(E->getPackLength(), E);
}

bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
  return Success(E->getValue(), E);
}

//===----------------------------------------------------------------------===//
// Float Evaluation
//===----------------------------------------------------------------------===//

namespace {
class FloatExprEvaluator
  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
  APFloat &Result;
public:
  FloatExprEvaluator(EvalInfo &info, APFloat &result)
    : ExprEvaluatorBaseTy(info), Result(result) {}

  bool Success(const CCValue &V, const Expr *e) {
    Result = V.getFloat();
    return true;
  }

  bool ValueInitialization(const Expr *E) {
    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
    return true;
  }

  bool VisitCallExpr(const CallExpr *E);

  bool VisitUnaryOperator(const UnaryOperator *E);
  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitFloatingLiteral(const FloatingLiteral *E);
  bool VisitCastExpr(const CastExpr *E);

  bool VisitUnaryReal(const UnaryOperator *E);
  bool VisitUnaryImag(const UnaryOperator *E);

  // FIXME: Missing: array subscript of vector, member of vector,
  //                 ImplicitValueInitExpr
};
} // end anonymous namespace

static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isRealFloatingType());
  return FloatExprEvaluator(Info, Result).Visit(E);
}

static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
                                  QualType ResultTy,
                                  const Expr *Arg,
                                  bool SNaN,
                                  llvm::APFloat &Result) {
  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
  if (!S) return false;

  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);

  llvm::APInt fill;

  // Treat empty strings as if they were zero.
  if (S->getString().empty())
    fill = llvm::APInt(32, 0);
  else if (S->getString().getAsInteger(0, fill))
    return false;

  if (SNaN)
    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
  else
    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
  return true;
}

bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
  switch (E->isBuiltinCall()) {
  default:
    return ExprEvaluatorBaseTy::VisitCallExpr(E);

  case Builtin::BI__builtin_huge_val:
  case Builtin::BI__builtin_huge_valf:
  case Builtin::BI__builtin_huge_vall:
  case Builtin::BI__builtin_inf:
  case Builtin::BI__builtin_inff:
  case Builtin::BI__builtin_infl: {
    const llvm::fltSemantics &Sem =
      Info.Ctx.getFloatTypeSemantics(E->getType());
    Result = llvm::APFloat::getInf(Sem);
    return true;
  }

  case Builtin::BI__builtin_nans:
  case Builtin::BI__builtin_nansf:
  case Builtin::BI__builtin_nansl:
    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
                               true, Result))
      return Error(E);
    return true;

  case Builtin::BI__builtin_nan:
  case Builtin::BI__builtin_nanf:
  case Builtin::BI__builtin_nanl:
    // If this is __builtin_nan() turn this into a nan, otherwise we
    // can't constant fold it.
    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
                               false, Result))
      return Error(E);
    return true;

  case Builtin::BI__builtin_fabs:
  case Builtin::BI__builtin_fabsf:
  case Builtin::BI__builtin_fabsl:
    if (!EvaluateFloat(E->getArg(0), Result, Info))
      return false;

    if (Result.isNegative())
      Result.changeSign();
    return true;

  case Builtin::BI__builtin_copysign:
  case Builtin::BI__builtin_copysignf:
  case Builtin::BI__builtin_copysignl: {
    APFloat RHS(0.);
    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
        !EvaluateFloat(E->getArg(1), RHS, Info))
      return false;
    Result.copySign(RHS);
    return true;
  }
  }
}

bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
    ComplexValue CV;
    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
      return false;
    Result = CV.FloatReal;
    return true;
  }

  return Visit(E->getSubExpr());
}

bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
    ComplexValue CV;
    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
      return false;
    Result = CV.FloatImag;
    return true;
  }

  VisitIgnoredValue(E->getSubExpr());
  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
  Result = llvm::APFloat::getZero(Sem);
  return true;
}

bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  switch (E->getOpcode()) {
  default: return Error(E);
  case UO_Plus:
    return EvaluateFloat(E->getSubExpr(), Result, Info);
  case UO_Minus:
    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
      return false;
    Result.changeSign();
    return true;
  }
}

bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  APFloat RHS(0.0);
  if (!EvaluateFloat(E->getLHS(), Result, Info))
    return false;
  if (!EvaluateFloat(E->getRHS(), RHS, Info))
    return false;

  switch (E->getOpcode()) {
  default: return Error(E);
  case BO_Mul:
    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
    return true;
  case BO_Add:
    Result.add(RHS, APFloat::rmNearestTiesToEven);
    return true;
  case BO_Sub:
    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
    return true;
  case BO_Div:
    Result.divide(RHS, APFloat::rmNearestTiesToEven);
    return true;
  }
}

bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
  Result = E->getValue();
  return true;
}

bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
  const Expr* SubExpr = E->getSubExpr();

  switch (E->getCastKind()) {
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_IntegralToFloating: {
    APSInt IntResult;
    if (!EvaluateInteger(SubExpr, IntResult, Info))
      return false;
    Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(),
                                  IntResult, Info.Ctx);
    return true;
  }

  case CK_FloatingCast: {
    if (!Visit(SubExpr))
      return false;
    Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(),
                                    Result, Info.Ctx);
    return true;
  }

  case CK_FloatingComplexToReal: {
    ComplexValue V;
    if (!EvaluateComplex(SubExpr, V, Info))
      return false;
    Result = V.getComplexFloatReal();
    return true;
  }
  }

  return Error(E);
}

//===----------------------------------------------------------------------===//
// Complex Evaluation (for float and integer)
//===----------------------------------------------------------------------===//

namespace {
class ComplexExprEvaluator
  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
  ComplexValue &Result;

public:
  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
    : ExprEvaluatorBaseTy(info), Result(Result) {}

  bool Success(const CCValue &V, const Expr *e) {
    Result.setFrom(V);
    return true;
  }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);

  bool VisitCastExpr(const CastExpr *E);

  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitUnaryOperator(const UnaryOperator *E);
  // FIXME Missing: ImplicitValueInitExpr, InitListExpr
};
} // end anonymous namespace

static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
                            EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isAnyComplexType());
  return ComplexExprEvaluator(Info, Result).Visit(E);
}

bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
  const Expr* SubExpr = E->getSubExpr();

  if (SubExpr->getType()->isRealFloatingType()) {
    Result.makeComplexFloat();
    APFloat &Imag = Result.FloatImag;
    if (!EvaluateFloat(SubExpr, Imag, Info))
      return false;

    Result.FloatReal = APFloat(Imag.getSemantics());
    return true;
  } else {
    assert(SubExpr->getType()->isIntegerType() &&
           "Unexpected imaginary literal.");

    Result.makeComplexInt();
    APSInt &Imag = Result.IntImag;
    if (!EvaluateInteger(SubExpr, Imag, Info))
      return false;

    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
    return true;
  }
}

bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {

  switch (E->getCastKind()) {
  case CK_BitCast:
  case CK_BaseToDerived:
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_Dynamic:
  case CK_ToUnion:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToPointer:
  case CK_NullToMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer:
  case CK_MemberPointerToBoolean:
  case CK_ConstructorConversion:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_PointerToBoolean:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_IntegralToBoolean:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingToBoolean:
  case CK_FloatingCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexToBoolean:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
    llvm_unreachable("invalid cast kind for complex value");

  case CK_LValueToRValue:
  case CK_NoOp:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_Dependent:
  case CK_LValueBitCast:
  case CK_UserDefinedConversion:
    return Error(E);

  case CK_FloatingRealToComplex: {
    APFloat &Real = Result.FloatReal;
    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
      return false;

    Result.makeComplexFloat();
    Result.FloatImag = APFloat(Real.getSemantics());
    return true;
  }

  case CK_FloatingComplexCast: {
    if (!Visit(E->getSubExpr()))
      return false;

    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();

    Result.FloatReal
      = HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx);
    Result.FloatImag
      = HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx);
    return true;
  }

  case CK_FloatingComplexToIntegralComplex: {
    if (!Visit(E->getSubExpr()))
      return false;

    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
    Result.makeComplexInt();
    Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx);
    Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx);
    return true;
  }

  case CK_IntegralRealToComplex: {
    APSInt &Real = Result.IntReal;
    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
      return false;

    Result.makeComplexInt();
    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
    return true;
  }

  case CK_IntegralComplexCast: {
    if (!Visit(E->getSubExpr()))
      return false;

    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();

    Result.IntReal = HandleIntToIntCast(To, From, Result.IntReal, Info.Ctx);
    Result.IntImag = HandleIntToIntCast(To, From, Result.IntImag, Info.Ctx);
    return true;
  }

  case CK_IntegralComplexToFloatingComplex: {
    if (!Visit(E->getSubExpr()))
      return false;

    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
    Result.makeComplexFloat();
    Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx);
    Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx);
    return true;
  }
  }

  llvm_unreachable("unknown cast resulting in complex value");
  return Error(E);
}

bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  if (!Visit(E->getLHS()))
    return false;

  ComplexValue RHS;
  if (!EvaluateComplex(E->getRHS(), RHS, Info))
    return false;

  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
         "Invalid operands to binary operator.");
  switch (E->getOpcode()) {
  default: return Error(E);
  case BO_Add:
    if (Result.isComplexFloat()) {
      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
                                       APFloat::rmNearestTiesToEven);
      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
                                       APFloat::rmNearestTiesToEven);
    } else {
      Result.getComplexIntReal() += RHS.getComplexIntReal();
      Result.getComplexIntImag() += RHS.getComplexIntImag();
    }
    break;
  case BO_Sub:
    if (Result.isComplexFloat()) {
      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
                                            APFloat::rmNearestTiesToEven);
      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
                                            APFloat::rmNearestTiesToEven);
    } else {
      Result.getComplexIntReal() -= RHS.getComplexIntReal();
      Result.getComplexIntImag() -= RHS.getComplexIntImag();
    }
    break;
  case BO_Mul:
    if (Result.isComplexFloat()) {
      ComplexValue LHS = Result;
      APFloat &LHS_r = LHS.getComplexFloatReal();
      APFloat &LHS_i = LHS.getComplexFloatImag();
      APFloat &RHS_r = RHS.getComplexFloatReal();
      APFloat &RHS_i = RHS.getComplexFloatImag();

      APFloat Tmp = LHS_r;
      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
      Result.getComplexFloatReal() = Tmp;
      Tmp = LHS_i;
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);

      Tmp = LHS_r;
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
      Result.getComplexFloatImag() = Tmp;
      Tmp = LHS_i;
      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
    } else {
      ComplexValue LHS = Result;
      Result.getComplexIntReal() =
        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
         LHS.getComplexIntImag() * RHS.getComplexIntImag());
      Result.getComplexIntImag() =
        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
         LHS.getComplexIntImag() * RHS.getComplexIntReal());
    }
    break;
  case BO_Div:
    if (Result.isComplexFloat()) {
      ComplexValue LHS = Result;
      APFloat &LHS_r = LHS.getComplexFloatReal();
      APFloat &LHS_i = LHS.getComplexFloatImag();
      APFloat &RHS_r = RHS.getComplexFloatReal();
      APFloat &RHS_i = RHS.getComplexFloatImag();
      APFloat &Res_r = Result.getComplexFloatReal();
      APFloat &Res_i = Result.getComplexFloatImag();

      APFloat Den = RHS_r;
      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
      APFloat Tmp = RHS_i;
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
      Den.add(Tmp, APFloat::rmNearestTiesToEven);

      Res_r = LHS_r;
      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
      Tmp = LHS_i;
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
      Res_r.divide(Den, APFloat::rmNearestTiesToEven);

      Res_i = LHS_i;
      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
      Tmp = LHS_r;
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
    } else {
      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
        return Error(E, diag::note_expr_divide_by_zero);

      ComplexValue LHS = Result;
      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
        RHS.getComplexIntImag() * RHS.getComplexIntImag();
      Result.getComplexIntReal() =
        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
      Result.getComplexIntImag() =
        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
    }
    break;
  }

  return true;
}

bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  // Get the operand value into 'Result'.
  if (!Visit(E->getSubExpr()))
    return false;

  switch (E->getOpcode()) {
  default:
    return Error(E);
  case UO_Extension:
    return true;
  case UO_Plus:
    // The result is always just the subexpr.
    return true;
  case UO_Minus:
    if (Result.isComplexFloat()) {
      Result.getComplexFloatReal().changeSign();
      Result.getComplexFloatImag().changeSign();
    }
    else {
      Result.getComplexIntReal() = -Result.getComplexIntReal();
      Result.getComplexIntImag() = -Result.getComplexIntImag();
    }
    return true;
  case UO_Not:
    if (Result.isComplexFloat())
      Result.getComplexFloatImag().changeSign();
    else
      Result.getComplexIntImag() = -Result.getComplexIntImag();
    return true;
  }
}

//===----------------------------------------------------------------------===//
// Void expression evaluation, primarily for a cast to void on the LHS of a
// comma operator
//===----------------------------------------------------------------------===//

namespace {
class VoidExprEvaluator
  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
public:
  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}

  bool Success(const CCValue &V, const Expr *e) { return true; }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return ExprEvaluatorBaseTy::VisitCastExpr(E);
    case CK_ToVoid:
      VisitIgnoredValue(E->getSubExpr());
      return true;
    }
  }
};
} // end anonymous namespace

static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
  assert(E->isRValue() && E->getType()->isVoidType());
  return VoidExprEvaluator(Info).Visit(E);
}

//===----------------------------------------------------------------------===//
// Top level Expr::EvaluateAsRValue method.
//===----------------------------------------------------------------------===//

static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E) {
  // In C, function designators are not lvalues, but we evaluate them as if they
  // are.
  if (E->isGLValue() || E->getType()->isFunctionType()) {
    LValue LV;
    if (!EvaluateLValue(E, LV, Info))
      return false;
    LV.moveInto(Result);
  } else if (E->getType()->isVectorType()) {
    if (!EvaluateVector(E, Result, Info))
      return false;
  } else if (E->getType()->isIntegralOrEnumerationType()) {
    if (!IntExprEvaluator(Info, Result).Visit(E))
      return false;
  } else if (E->getType()->hasPointerRepresentation()) {
    LValue LV;
    if (!EvaluatePointer(E, LV, Info))
      return false;
    LV.moveInto(Result);
  } else if (E->getType()->isRealFloatingType()) {
    llvm::APFloat F(0.0);
    if (!EvaluateFloat(E, F, Info))
      return false;
    Result = CCValue(F);
  } else if (E->getType()->isAnyComplexType()) {
    ComplexValue C;
    if (!EvaluateComplex(E, C, Info))
      return false;
    C.moveInto(Result);
  } else if (E->getType()->isMemberPointerType()) {
    MemberPtr P;
    if (!EvaluateMemberPointer(E, P, Info))
      return false;
    P.moveInto(Result);
    return true;
  } else if (E->getType()->isArrayType() && E->getType()->isLiteralType()) {
    LValue LV;
    LV.set(E, Info.CurrentCall);
    if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
      return false;
    Result = Info.CurrentCall->Temporaries[E];
  } else if (E->getType()->isRecordType() && E->getType()->isLiteralType()) {
    LValue LV;
    LV.set(E, Info.CurrentCall);
    if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
      return false;
    Result = Info.CurrentCall->Temporaries[E];
  } else if (E->getType()->isVoidType()) {
    if (!EvaluateVoid(E, Info))
      return false;
  } else {
    Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  return true;
}

/// EvaluateConstantExpression - Evaluate an expression as a constant expression
/// in-place in an APValue. In some cases, the in-place evaluation is essential,
/// since later initializers for an object can indirectly refer to subobjects
/// which were initialized earlier.
static bool EvaluateConstantExpression(APValue &Result, EvalInfo &Info,
                                       const LValue &This, const Expr *E) {
  if (E->isRValue() && E->getType()->isLiteralType()) {
    // Evaluate arrays and record types in-place, so that later initializers can
    // refer to earlier-initialized members of the object.
    if (E->getType()->isArrayType())
      return EvaluateArray(E, This, Result, Info);
    else if (E->getType()->isRecordType())
      return EvaluateRecord(E, This, Result, Info);
  }

  // For any other type, in-place evaluation is unimportant.
  CCValue CoreConstResult;
  return Evaluate(CoreConstResult, Info, E) &&
         CheckConstantExpression(Info, E, CoreConstResult, Result);
}

/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
/// lvalue-to-rvalue cast if it is an lvalue.
static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
  CCValue Value;
  if (!::Evaluate(Value, Info, E))
    return false;

  if (E->isGLValue()) {
    LValue LV;
    LV.setFrom(Value);
    if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Value))
      return false;
  }

  // Check this core constant expression is a constant expression, and if so,
  // convert it to one.
  return CheckConstantExpression(Info, E, Value, Result);
}

/// EvaluateAsRValue - Return true if this is a constant which we can fold using
/// any crazy technique (that has nothing to do with language standards) that
/// we want to.  If this function returns true, it returns the folded constant
/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
/// will be applied to the result.
bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
  // Fast-path evaluations of integer literals, since we sometimes see files
  // containing vast quantities of these.
  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(this)) {
    Result.Val = APValue(APSInt(L->getValue(),
                                L->getType()->isUnsignedIntegerType()));
    return true;
  }

  // FIXME: Evaluating initializers for large arrays can cause performance
  // problems, and we don't use such values yet. Once we have a more efficient
  // array representation, this should be reinstated, and used by CodeGen.
  // The same problem affects large records.
  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
      !Ctx.getLangOptions().CPlusPlus0x)
    return false;

  // FIXME: If this is the initializer for an lvalue, pass that in.
  EvalInfo Info(Ctx, Result);
  return ::EvaluateAsRValue(Info, this, Result.Val);
}

bool Expr::EvaluateAsBooleanCondition(bool &Result,
                                      const ASTContext &Ctx) const {
  EvalResult Scratch;
  return EvaluateAsRValue(Scratch, Ctx) &&
         HandleConversionToBool(CCValue(Scratch.Val, CCValue::GlobalValue()),
                                Result);
}

bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx) const {
  EvalResult ExprResult;
  if (!EvaluateAsRValue(ExprResult, Ctx) || ExprResult.HasSideEffects ||
      !ExprResult.Val.isInt())
    return false;

  Result = ExprResult.Val.getInt();
  return true;
}

bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
  EvalInfo Info(Ctx, Result);

  LValue LV;
  return EvaluateLValue(this, LV, Info) && !Result.HasSideEffects &&
         CheckLValueConstantExpression(Info, this, LV, Result.Val);
}

/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded, but discard the result.
bool Expr::isEvaluatable(const ASTContext &Ctx) const {
  EvalResult Result;
  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
}

bool Expr::HasSideEffects(const ASTContext &Ctx) const {
  return HasSideEffect(Ctx).Visit(this);
}

APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
  EvalResult EvalResult;
  bool Result = EvaluateAsRValue(EvalResult, Ctx);
  (void)Result;
  assert(Result && "Could not evaluate expression");
  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");

  return EvalResult.Val.getInt();
}

 bool Expr::EvalResult::isGlobalLValue() const {
   assert(Val.isLValue());
   return IsGlobalLValue(Val.getLValueBase());
 }


/// isIntegerConstantExpr - this recursive routine will test if an expression is
/// an integer constant expression.

/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
/// comma, etc
///
/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
/// cast+dereference.

// CheckICE - This function does the fundamental ICE checking: the returned
// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
// Note that to reduce code duplication, this helper does no evaluation
// itself; the caller checks whether the expression is evaluatable, and
// in the rare cases where CheckICE actually cares about the evaluated
// value, it calls into Evalute.
//
// Meanings of Val:
// 0: This expression is an ICE.
// 1: This expression is not an ICE, but if it isn't evaluated, it's
//    a legal subexpression for an ICE. This return value is used to handle
//    the comma operator in C99 mode.
// 2: This expression is not an ICE, and is not a legal subexpression for one.

namespace {

struct ICEDiag {
  unsigned Val;
  SourceLocation Loc;

  public:
  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
  ICEDiag() : Val(0) {}
};

}

static ICEDiag NoDiag() { return ICEDiag(); }

static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
  Expr::EvalResult EVResult;
  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
      !EVResult.Val.isInt()) {
    return ICEDiag(2, E->getLocStart());
  }
  return NoDiag();
}

static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
  if (!E->getType()->isIntegralOrEnumerationType()) {
    return ICEDiag(2, E->getLocStart());
  }

  switch (E->getStmtClass()) {
#define ABSTRACT_STMT(Node)
#define STMT(Node, Base) case Expr::Node##Class:
#define EXPR(Node, Base)
#include "clang/AST/StmtNodes.inc"
  case Expr::PredefinedExprClass:
  case Expr::FloatingLiteralClass:
  case Expr::ImaginaryLiteralClass:
  case Expr::StringLiteralClass:
  case Expr::ArraySubscriptExprClass:
  case Expr::MemberExprClass:
  case Expr::CompoundAssignOperatorClass:
  case Expr::CompoundLiteralExprClass:
  case Expr::ExtVectorElementExprClass:
  case Expr::DesignatedInitExprClass:
  case Expr::ImplicitValueInitExprClass:
  case Expr::ParenListExprClass:
  case Expr::VAArgExprClass:
  case Expr::AddrLabelExprClass:
  case Expr::StmtExprClass:
  case Expr::CXXMemberCallExprClass:
  case Expr::CUDAKernelCallExprClass:
  case Expr::CXXDynamicCastExprClass:
  case Expr::CXXTypeidExprClass:
  case Expr::CXXUuidofExprClass:
  case Expr::CXXNullPtrLiteralExprClass:
  case Expr::CXXThisExprClass:
  case Expr::CXXThrowExprClass:
  case Expr::CXXNewExprClass:
  case Expr::CXXDeleteExprClass:
  case Expr::CXXPseudoDestructorExprClass:
  case Expr::UnresolvedLookupExprClass:
  case Expr::DependentScopeDeclRefExprClass:
  case Expr::CXXConstructExprClass:
  case Expr::CXXBindTemporaryExprClass:
  case Expr::ExprWithCleanupsClass:
  case Expr::CXXTemporaryObjectExprClass:
  case Expr::CXXUnresolvedConstructExprClass:
  case Expr::CXXDependentScopeMemberExprClass:
  case Expr::UnresolvedMemberExprClass:
  case Expr::ObjCStringLiteralClass:
  case Expr::ObjCEncodeExprClass:
  case Expr::ObjCMessageExprClass:
  case Expr::ObjCSelectorExprClass:
  case Expr::ObjCProtocolExprClass:
  case Expr::ObjCIvarRefExprClass:
  case Expr::ObjCPropertyRefExprClass:
  case Expr::ObjCIsaExprClass:
  case Expr::ShuffleVectorExprClass:
  case Expr::BlockExprClass:
  case Expr::BlockDeclRefExprClass:
  case Expr::NoStmtClass:
  case Expr::OpaqueValueExprClass:
  case Expr::PackExpansionExprClass:
  case Expr::SubstNonTypeTemplateParmPackExprClass:
  case Expr::AsTypeExprClass:
  case Expr::ObjCIndirectCopyRestoreExprClass:
  case Expr::MaterializeTemporaryExprClass:
  case Expr::PseudoObjectExprClass:
  case Expr::AtomicExprClass:
  case Expr::InitListExprClass:
    return ICEDiag(2, E->getLocStart());

  case Expr::SizeOfPackExprClass:
  case Expr::GNUNullExprClass:
    // GCC considers the GNU __null value to be an integral constant expression.
    return NoDiag();

  case Expr::SubstNonTypeTemplateParmExprClass:
    return
      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);

  case Expr::ParenExprClass:
    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
  case Expr::GenericSelectionExprClass:
    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
  case Expr::IntegerLiteralClass:
  case Expr::CharacterLiteralClass:
  case Expr::CXXBoolLiteralExprClass:
  case Expr::CXXScalarValueInitExprClass:
  case Expr::UnaryTypeTraitExprClass:
  case Expr::BinaryTypeTraitExprClass:
  case Expr::ArrayTypeTraitExprClass:
  case Expr::ExpressionTraitExprClass:
  case Expr::CXXNoexceptExprClass:
    return NoDiag();
  case Expr::CallExprClass:
  case Expr::CXXOperatorCallExprClass: {
    // C99 6.6/3 allows function calls within unevaluated subexpressions of
    // constant expressions, but they can never be ICEs because an ICE cannot
    // contain an operand of (pointer to) function type.
    const CallExpr *CE = cast<CallExpr>(E);
    if (CE->isBuiltinCall())
      return CheckEvalInICE(E, Ctx);
    return ICEDiag(2, E->getLocStart());
  }
  case Expr::DeclRefExprClass:
    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
      return NoDiag();
    if (Ctx.getLangOptions().CPlusPlus && IsConstNonVolatile(E->getType())) {
      const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();

      // Parameter variables are never constants.  Without this check,
      // getAnyInitializer() can find a default argument, which leads
      // to chaos.
      if (isa<ParmVarDecl>(D))
        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());

      // C++ 7.1.5.1p2
      //   A variable of non-volatile const-qualified integral or enumeration
      //   type initialized by an ICE can be used in ICEs.
      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
        if (!Dcl->getType()->isIntegralOrEnumerationType())
          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());

        // Look for a declaration of this variable that has an initializer.
        const VarDecl *ID = 0;
        const Expr *Init = Dcl->getAnyInitializer(ID);
        if (Init) {
          if (ID->isInitKnownICE()) {
            // We have already checked whether this subexpression is an
            // integral constant expression.
            if (ID->isInitICE())
              return NoDiag();
            else
              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
          }

          // It's an ICE whether or not the definition we found is
          // out-of-line.  See DR 721 and the discussion in Clang PR
          // 6206 for details.

          if (Dcl->isCheckingICE()) {
            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
          }

          Dcl->setCheckingICE();
          ICEDiag Result = CheckICE(Init, Ctx);
          // Cache the result of the ICE test.
          Dcl->setInitKnownICE(Result.Val == 0);
          return Result;
        }
      }
    }
    return ICEDiag(2, E->getLocStart());
  case Expr::UnaryOperatorClass: {
    const UnaryOperator *Exp = cast<UnaryOperator>(E);
    switch (Exp->getOpcode()) {
    case UO_PostInc:
    case UO_PostDec:
    case UO_PreInc:
    case UO_PreDec:
    case UO_AddrOf:
    case UO_Deref:
      // C99 6.6/3 allows increment and decrement within unevaluated
      // subexpressions of constant expressions, but they can never be ICEs
      // because an ICE cannot contain an lvalue operand.
      return ICEDiag(2, E->getLocStart());
    case UO_Extension:
    case UO_LNot:
    case UO_Plus:
    case UO_Minus:
    case UO_Not:
    case UO_Real:
    case UO_Imag:
      return CheckICE(Exp->getSubExpr(), Ctx);
    }
    
    // OffsetOf falls through here.
  }
  case Expr::OffsetOfExprClass: {
      // Note that per C99, offsetof must be an ICE. And AFAIK, using
      // EvaluateAsRValue matches the proposed gcc behavior for cases like
      // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
      // compliance: we should warn earlier for offsetof expressions with
      // array subscripts that aren't ICEs, and if the array subscripts
      // are ICEs, the value of the offsetof must be an integer constant.
      return CheckEvalInICE(E, Ctx);
  }
  case Expr::UnaryExprOrTypeTraitExprClass: {
    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
    if ((Exp->getKind() ==  UETT_SizeOf) &&
        Exp->getTypeOfArgument()->isVariableArrayType())
      return ICEDiag(2, E->getLocStart());
    return NoDiag();
  }
  case Expr::BinaryOperatorClass: {
    const BinaryOperator *Exp = cast<BinaryOperator>(E);
    switch (Exp->getOpcode()) {
    case BO_PtrMemD:
    case BO_PtrMemI:
    case BO_Assign:
    case BO_MulAssign:
    case BO_DivAssign:
    case BO_RemAssign:
    case BO_AddAssign:
    case BO_SubAssign:
    case BO_ShlAssign:
    case BO_ShrAssign:
    case BO_AndAssign:
    case BO_XorAssign:
    case BO_OrAssign:
      // C99 6.6/3 allows assignments within unevaluated subexpressions of
      // constant expressions, but they can never be ICEs because an ICE cannot
      // contain an lvalue operand.
      return ICEDiag(2, E->getLocStart());

    case BO_Mul:
    case BO_Div:
    case BO_Rem:
    case BO_Add:
    case BO_Sub:
    case BO_Shl:
    case BO_Shr:
    case BO_LT:
    case BO_GT:
    case BO_LE:
    case BO_GE:
    case BO_EQ:
    case BO_NE:
    case BO_And:
    case BO_Xor:
    case BO_Or:
    case BO_Comma: {
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
      if (Exp->getOpcode() == BO_Div ||
          Exp->getOpcode() == BO_Rem) {
        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
        // we don't evaluate one.
        if (LHSResult.Val == 0 && RHSResult.Val == 0) {
          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
          if (REval == 0)
            return ICEDiag(1, E->getLocStart());
          if (REval.isSigned() && REval.isAllOnesValue()) {
            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
            if (LEval.isMinSignedValue())
              return ICEDiag(1, E->getLocStart());
          }
        }
      }
      if (Exp->getOpcode() == BO_Comma) {
        if (Ctx.getLangOptions().C99) {
          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
          // if it isn't evaluated.
          if (LHSResult.Val == 0 && RHSResult.Val == 0)
            return ICEDiag(1, E->getLocStart());
        } else {
          // In both C89 and C++, commas in ICEs are illegal.
          return ICEDiag(2, E->getLocStart());
        }
      }
      if (LHSResult.Val >= RHSResult.Val)
        return LHSResult;
      return RHSResult;
    }
    case BO_LAnd:
    case BO_LOr: {
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
        // Rare case where the RHS has a comma "side-effect"; we need
        // to actually check the condition to see whether the side
        // with the comma is evaluated.
        if ((Exp->getOpcode() == BO_LAnd) !=
            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
          return RHSResult;
        return NoDiag();
      }

      if (LHSResult.Val >= RHSResult.Val)
        return LHSResult;
      return RHSResult;
    }
    }
  }
  case Expr::ImplicitCastExprClass:
  case Expr::CStyleCastExprClass:
  case Expr::CXXFunctionalCastExprClass:
  case Expr::CXXStaticCastExprClass:
  case Expr::CXXReinterpretCastExprClass:
  case Expr::CXXConstCastExprClass:
  case Expr::ObjCBridgedCastExprClass: {
    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
    if (isa<ExplicitCastExpr>(E) &&
        isa<FloatingLiteral>(SubExpr->IgnoreParenImpCasts()))
      return NoDiag();
    switch (cast<CastExpr>(E)->getCastKind()) {
    case CK_LValueToRValue:
    case CK_NoOp:
    case CK_IntegralToBoolean:
    case CK_IntegralCast:
      return CheckICE(SubExpr, Ctx);
    default:
      return ICEDiag(2, E->getLocStart());
    }
  }
  case Expr::BinaryConditionalOperatorClass: {
    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
    if (CommonResult.Val == 2) return CommonResult;
    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
    if (FalseResult.Val == 2) return FalseResult;
    if (CommonResult.Val == 1) return CommonResult;
    if (FalseResult.Val == 1 &&
        Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
    return FalseResult;
  }
  case Expr::ConditionalOperatorClass: {
    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
    // If the condition (ignoring parens) is a __builtin_constant_p call,
    // then only the true side is actually considered in an integer constant
    // expression, and it is fully evaluated.  This is an important GNU
    // extension.  See GCC PR38377 for discussion.
    if (const CallExpr *CallCE
        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p) {
        Expr::EvalResult EVResult;
        if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
            !EVResult.Val.isInt()) {
          return ICEDiag(2, E->getLocStart());
        }
        return NoDiag();
      }
    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
    if (CondResult.Val == 2)
      return CondResult;

    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);

    if (TrueResult.Val == 2)
      return TrueResult;
    if (FalseResult.Val == 2)
      return FalseResult;
    if (CondResult.Val == 1)
      return CondResult;
    if (TrueResult.Val == 0 && FalseResult.Val == 0)
      return NoDiag();
    // Rare case where the diagnostics depend on which side is evaluated
    // Note that if we get here, CondResult is 0, and at least one of
    // TrueResult and FalseResult is non-zero.
    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
      return FalseResult;
    }
    return TrueResult;
  }
  case Expr::CXXDefaultArgExprClass:
    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
  case Expr::ChooseExprClass: {
    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
  }
  }

  // Silence a GCC warning
  return ICEDiag(2, E->getLocStart());
}

/// Evaluate an expression as a C++11 integral constant expression.
static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
                                                    const Expr *E,
                                                    llvm::APSInt *Value,
                                                    SourceLocation *Loc) {
  if (!E->getType()->isIntegralOrEnumerationType()) {
    if (Loc) *Loc = E->getExprLoc();
    return false;
  }

  Expr::EvalResult Result;
  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
  Result.Diag = &Diags;
  EvalInfo Info(Ctx, Result);

  bool IsICE = EvaluateAsRValue(Info, E, Result.Val);
  if (!Diags.empty()) {
    IsICE = false;
    if (Loc) *Loc = Diags[0].first;
  } else if (!IsICE && Loc) {
    *Loc = E->getExprLoc();
  }

  if (!IsICE)
    return false;

  assert(Result.Val.isInt() && "pointer cast to int is not an ICE");
  if (Value) *Value = Result.Val.getInt();
  return true;
}

bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
  if (Ctx.getLangOptions().CPlusPlus0x)
    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);

  ICEDiag d = CheckICE(this, Ctx);
  if (d.Val != 0) {
    if (Loc) *Loc = d.Loc;
    return false;
  }
  return true;
}

bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
                                 SourceLocation *Loc, bool isEvaluated) const {
  if (Ctx.getLangOptions().CPlusPlus0x)
    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);

  if (!isIntegerConstantExpr(Ctx, Loc))
    return false;
  if (!EvaluateAsInt(Value, Ctx))
    llvm_unreachable("ICE cannot be evaluated!");
  return true;
}
OpenPOWER on IntegriCloud