summaryrefslogtreecommitdiffstats
path: root/clang/lib/AST/Expr.cpp
blob: e343949ac1f14ca6138006131f24733d26982f17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
using namespace clang;

const Expr *Expr::getBestDynamicClassTypeExpr() const {
  const Expr *E = this;
  while (true) {
    E = E->ignoreParenBaseCasts();

    // Follow the RHS of a comma operator.
    if (auto *BO = dyn_cast<BinaryOperator>(E)) {
      if (BO->getOpcode() == BO_Comma) {
        E = BO->getRHS();
        continue;
      }
    }

    // Step into initializer for materialized temporaries.
    if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = MTE->GetTemporaryExpr();
      continue;
    }

    break;
  }

  return E;
}

const CXXRecordDecl *Expr::getBestDynamicClassType() const {
  const Expr *E = getBestDynamicClassTypeExpr();
  QualType DerivedType = E->getType();
  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
    DerivedType = PTy->getPointeeType();

  if (DerivedType->isDependentType())
    return nullptr;

  const RecordType *Ty = DerivedType->castAs<RecordType>();
  Decl *D = Ty->getDecl();
  return cast<CXXRecordDecl>(D);
}

const Expr *Expr::skipRValueSubobjectAdjustments(
    SmallVectorImpl<const Expr *> &CommaLHSs,
    SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
  const Expr *E = this;
  while (true) {
    E = E->IgnoreParens();

    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
      if ((CE->getCastKind() == CK_DerivedToBase ||
           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
          E->getType()->isRecordType()) {
        E = CE->getSubExpr();
        CXXRecordDecl *Derived
          = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
        continue;
      }

      if (CE->getCastKind() == CK_NoOp) {
        E = CE->getSubExpr();
        continue;
      }
    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
      if (!ME->isArrow()) {
        assert(ME->getBase()->getType()->isRecordType());
        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
          if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
            E = ME->getBase();
            Adjustments.push_back(SubobjectAdjustment(Field));
            continue;
          }
        }
      }
    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
      if (BO->getOpcode() == BO_PtrMemD) {
        assert(BO->getRHS()->isRValue());
        E = BO->getLHS();
        const MemberPointerType *MPT =
          BO->getRHS()->getType()->getAs<MemberPointerType>();
        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
        continue;
      } else if (BO->getOpcode() == BO_Comma) {
        CommaLHSs.push_back(BO->getLHS());
        E = BO->getRHS();
        continue;
      }
    }

    // Nothing changed.
    break;
  }
  return E;
}

/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool Expr::isKnownToHaveBooleanValue() const {
  const Expr *E = IgnoreParens();

  // If this value has _Bool type, it is obvious 0/1.
  if (E->getType()->isBooleanType()) return true;
  // If this is a non-scalar-integer type, we don't care enough to try.
  if (!E->getType()->isIntegralOrEnumerationType()) return false;

  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    switch (UO->getOpcode()) {
    case UO_Plus:
      return UO->getSubExpr()->isKnownToHaveBooleanValue();
    case UO_LNot:
      return true;
    default:
      return false;
    }
  }

  // Only look through implicit casts.  If the user writes
  // '(int) (a && b)' treat it as an arbitrary int.
  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
    return CE->getSubExpr()->isKnownToHaveBooleanValue();

  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    switch (BO->getOpcode()) {
    default: return false;
    case BO_LT:   // Relational operators.
    case BO_GT:
    case BO_LE:
    case BO_GE:
    case BO_EQ:   // Equality operators.
    case BO_NE:
    case BO_LAnd: // AND operator.
    case BO_LOr:  // Logical OR operator.
      return true;

    case BO_And:  // Bitwise AND operator.
    case BO_Xor:  // Bitwise XOR operator.
    case BO_Or:   // Bitwise OR operator.
      // Handle things like (x==2)|(y==12).
      return BO->getLHS()->isKnownToHaveBooleanValue() &&
             BO->getRHS()->isKnownToHaveBooleanValue();

    case BO_Comma:
    case BO_Assign:
      return BO->getRHS()->isKnownToHaveBooleanValue();
    }
  }

  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
           CO->getFalseExpr()->isKnownToHaveBooleanValue();

  return false;
}

// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getExprLoc().
//
// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
namespace {
  /// This implementation is used when a class provides a custom
  /// implementation of getExprLoc.
  template <class E, class T>
  SourceLocation getExprLocImpl(const Expr *expr,
                                SourceLocation (T::*v)() const) {
    return static_cast<const E*>(expr)->getExprLoc();
  }

  /// This implementation is used when a class doesn't provide
  /// a custom implementation of getExprLoc.  Overload resolution
  /// should pick it over the implementation above because it's
  /// more specialized according to function template partial ordering.
  template <class E>
  SourceLocation getExprLocImpl(const Expr *expr,
                                SourceLocation (Expr::*v)() const) {
    return static_cast<const E *>(expr)->getBeginLoc();
  }
}

SourceLocation Expr::getExprLoc() const {
  switch (getStmtClass()) {
  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
  case Stmt::type##Class: break;
#define EXPR(type, base) \
  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
#include "clang/AST/StmtNodes.inc"
  }
  llvm_unreachable("unknown expression kind");
}

//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//

/// Compute the type-, value-, and instantiation-dependence of a
/// declaration reference
/// based on the declaration being referenced.
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
                                     QualType T, bool &TypeDependent,
                                     bool &ValueDependent,
                                     bool &InstantiationDependent) {
  TypeDependent = false;
  ValueDependent = false;
  InstantiationDependent = false;

  // (TD) C++ [temp.dep.expr]p3:
  //   An id-expression is type-dependent if it contains:
  //
  // and
  //
  // (VD) C++ [temp.dep.constexpr]p2:
  //  An identifier is value-dependent if it is:

  //  (TD)  - an identifier that was declared with dependent type
  //  (VD)  - a name declared with a dependent type,
  if (T->isDependentType()) {
    TypeDependent = true;
    ValueDependent = true;
    InstantiationDependent = true;
    return;
  } else if (T->isInstantiationDependentType()) {
    InstantiationDependent = true;
  }

  //  (TD)  - a conversion-function-id that specifies a dependent type
  if (D->getDeclName().getNameKind()
                                == DeclarationName::CXXConversionFunctionName) {
    QualType T = D->getDeclName().getCXXNameType();
    if (T->isDependentType()) {
      TypeDependent = true;
      ValueDependent = true;
      InstantiationDependent = true;
      return;
    }

    if (T->isInstantiationDependentType())
      InstantiationDependent = true;
  }

  //  (VD)  - the name of a non-type template parameter,
  if (isa<NonTypeTemplateParmDecl>(D)) {
    ValueDependent = true;
    InstantiationDependent = true;
    return;
  }

  //  (VD) - a constant with integral or enumeration type and is
  //         initialized with an expression that is value-dependent.
  //  (VD) - a constant with literal type and is initialized with an
  //         expression that is value-dependent [C++11].
  //  (VD) - FIXME: Missing from the standard:
  //       -  an entity with reference type and is initialized with an
  //          expression that is value-dependent [C++11]
  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    if ((Ctx.getLangOpts().CPlusPlus11 ?
           Var->getType()->isLiteralType(Ctx) :
           Var->getType()->isIntegralOrEnumerationType()) &&
        (Var->getType().isConstQualified() ||
         Var->getType()->isReferenceType())) {
      if (const Expr *Init = Var->getAnyInitializer())
        if (Init->isValueDependent()) {
          ValueDependent = true;
          InstantiationDependent = true;
        }
    }

    // (VD) - FIXME: Missing from the standard:
    //      -  a member function or a static data member of the current
    //         instantiation
    if (Var->isStaticDataMember() &&
        Var->getDeclContext()->isDependentContext()) {
      ValueDependent = true;
      InstantiationDependent = true;
      TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
      if (TInfo->getType()->isIncompleteArrayType())
        TypeDependent = true;
    }

    return;
  }

  // (VD) - FIXME: Missing from the standard:
  //      -  a member function or a static data member of the current
  //         instantiation
  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    ValueDependent = true;
    InstantiationDependent = true;
  }
}

void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
  bool TypeDependent = false;
  bool ValueDependent = false;
  bool InstantiationDependent = false;
  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
                           ValueDependent, InstantiationDependent);

  ExprBits.TypeDependent |= TypeDependent;
  ExprBits.ValueDependent |= ValueDependent;
  ExprBits.InstantiationDependent |= InstantiationDependent;

  // Is the declaration a parameter pack?
  if (getDecl()->isParameterPack())
    ExprBits.ContainsUnexpandedParameterPack = true;
}

DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
                         NestedNameSpecifierLoc QualifierLoc,
                         SourceLocation TemplateKWLoc,
                         ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
                         const DeclarationNameInfo &NameInfo,
                         NamedDecl *FoundD,
                         const TemplateArgumentListInfo *TemplateArgs,
                         QualType T, ExprValueKind VK)
  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    D(D), DNLoc(NameInfo.getInfo()) {
  DeclRefExprBits.Loc = NameInfo.getLoc();
  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
  if (QualifierLoc) {
    new (getTrailingObjects<NestedNameSpecifierLoc>())
        NestedNameSpecifierLoc(QualifierLoc);
    auto *NNS = QualifierLoc.getNestedNameSpecifier();
    if (NNS->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (NNS->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;
  }
  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
  if (FoundD)
    *getTrailingObjects<NamedDecl *>() = FoundD;
  DeclRefExprBits.HasTemplateKWAndArgsInfo
    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
      RefersToEnclosingVariableOrCapture;
  if (TemplateArgs) {
    bool Dependent = false;
    bool InstantiationDependent = false;
    bool ContainsUnexpandedParameterPack = false;
    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
        Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
    assert(!Dependent && "built a DeclRefExpr with dependent template args");
    ExprBits.InstantiationDependent |= InstantiationDependent;
    ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
  } else if (TemplateKWLoc.isValid()) {
    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc);
  }
  DeclRefExprBits.HadMultipleCandidates = 0;

  computeDependence(Ctx);
}

DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
                                 NestedNameSpecifierLoc QualifierLoc,
                                 SourceLocation TemplateKWLoc,
                                 ValueDecl *D,
                                 bool RefersToEnclosingVariableOrCapture,
                                 SourceLocation NameLoc,
                                 QualType T,
                                 ExprValueKind VK,
                                 NamedDecl *FoundD,
                                 const TemplateArgumentListInfo *TemplateArgs) {
  return Create(Context, QualifierLoc, TemplateKWLoc, D,
                RefersToEnclosingVariableOrCapture,
                DeclarationNameInfo(D->getDeclName(), NameLoc),
                T, VK, FoundD, TemplateArgs);
}

DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
                                 NestedNameSpecifierLoc QualifierLoc,
                                 SourceLocation TemplateKWLoc,
                                 ValueDecl *D,
                                 bool RefersToEnclosingVariableOrCapture,
                                 const DeclarationNameInfo &NameInfo,
                                 QualType T,
                                 ExprValueKind VK,
                                 NamedDecl *FoundD,
                                 const TemplateArgumentListInfo *TemplateArgs) {
  // Filter out cases where the found Decl is the same as the value refenenced.
  if (D == FoundD)
    FoundD = nullptr;

  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
  std::size_t Size =
      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
          QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
          HasTemplateKWAndArgsInfo ? 1 : 0,
          TemplateArgs ? TemplateArgs->size() : 0);

  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
                               RefersToEnclosingVariableOrCapture,
                               NameInfo, FoundD, TemplateArgs, T, VK);
}

DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
                                      bool HasQualifier,
                                      bool HasFoundDecl,
                                      bool HasTemplateKWAndArgsInfo,
                                      unsigned NumTemplateArgs) {
  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
  std::size_t Size =
      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
          HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
          NumTemplateArgs);
  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  return new (Mem) DeclRefExpr(EmptyShell());
}

SourceLocation DeclRefExpr::getBeginLoc() const {
  if (hasQualifier())
    return getQualifierLoc().getBeginLoc();
  return getNameInfo().getBeginLoc();
}
SourceLocation DeclRefExpr::getEndLoc() const {
  if (hasExplicitTemplateArgs())
    return getRAngleLoc();
  return getNameInfo().getEndLoc();
}

PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
                               StringLiteral *SL)
    : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
           FNTy->isDependentType(), FNTy->isDependentType(),
           FNTy->isInstantiationDependentType(),
           /*ContainsUnexpandedParameterPack=*/false) {
  PredefinedExprBits.Kind = IK;
  assert((getIdentKind() == IK) &&
         "IdentKind do not fit in PredefinedExprBitfields!");
  bool HasFunctionName = SL != nullptr;
  PredefinedExprBits.HasFunctionName = HasFunctionName;
  PredefinedExprBits.Loc = L;
  if (HasFunctionName)
    setFunctionName(SL);
}

PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
    : Expr(PredefinedExprClass, Empty) {
  PredefinedExprBits.HasFunctionName = HasFunctionName;
}

PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
                                       QualType FNTy, IdentKind IK,
                                       StringLiteral *SL) {
  bool HasFunctionName = SL != nullptr;
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
                           alignof(PredefinedExpr));
  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
}

PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
                                            bool HasFunctionName) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
                           alignof(PredefinedExpr));
  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
}

StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
  switch (IK) {
  case Func:
    return "__func__";
  case Function:
    return "__FUNCTION__";
  case FuncDName:
    return "__FUNCDNAME__";
  case LFunction:
    return "L__FUNCTION__";
  case PrettyFunction:
    return "__PRETTY_FUNCTION__";
  case FuncSig:
    return "__FUNCSIG__";
  case LFuncSig:
    return "L__FUNCSIG__";
  case PrettyFunctionNoVirtual:
    break;
  }
  llvm_unreachable("Unknown ident kind for PredefinedExpr");
}

// FIXME: Maybe this should use DeclPrinter with a special "print predefined
// expr" policy instead.
std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
  ASTContext &Context = CurrentDecl->getASTContext();

  if (IK == PredefinedExpr::FuncDName) {
    if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
      std::unique_ptr<MangleContext> MC;
      MC.reset(Context.createMangleContext());

      if (MC->shouldMangleDeclName(ND)) {
        SmallString<256> Buffer;
        llvm::raw_svector_ostream Out(Buffer);
        if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
          MC->mangleCXXCtor(CD, Ctor_Base, Out);
        else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
          MC->mangleCXXDtor(DD, Dtor_Base, Out);
        else
          MC->mangleName(ND, Out);

        if (!Buffer.empty() && Buffer.front() == '\01')
          return Buffer.substr(1);
        return Buffer.str();
      } else
        return ND->getIdentifier()->getName();
    }
    return "";
  }
  if (isa<BlockDecl>(CurrentDecl)) {
    // For blocks we only emit something if it is enclosed in a function
    // For top-level block we'd like to include the name of variable, but we
    // don't have it at this point.
    auto DC = CurrentDecl->getDeclContext();
    if (DC->isFileContext())
      return "";

    SmallString<256> Buffer;
    llvm::raw_svector_ostream Out(Buffer);
    if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
      // For nested blocks, propagate up to the parent.
      Out << ComputeName(IK, DCBlock);
    else if (auto *DCDecl = dyn_cast<Decl>(DC))
      Out << ComputeName(IK, DCDecl) << "_block_invoke";
    return Out.str();
  }
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
        IK != FuncSig && IK != LFuncSig)
      return FD->getNameAsString();

    SmallString<256> Name;
    llvm::raw_svector_ostream Out(Name);

    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
        Out << "virtual ";
      if (MD->isStatic())
        Out << "static ";
    }

    PrintingPolicy Policy(Context.getLangOpts());
    std::string Proto;
    llvm::raw_string_ostream POut(Proto);

    const FunctionDecl *Decl = FD;
    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
      Decl = Pattern;
    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
    const FunctionProtoType *FT = nullptr;
    if (FD->hasWrittenPrototype())
      FT = dyn_cast<FunctionProtoType>(AFT);

    if (IK == FuncSig || IK == LFuncSig) {
      switch (AFT->getCallConv()) {
      case CC_C: POut << "__cdecl "; break;
      case CC_X86StdCall: POut << "__stdcall "; break;
      case CC_X86FastCall: POut << "__fastcall "; break;
      case CC_X86ThisCall: POut << "__thiscall "; break;
      case CC_X86VectorCall: POut << "__vectorcall "; break;
      case CC_X86RegCall: POut << "__regcall "; break;
      // Only bother printing the conventions that MSVC knows about.
      default: break;
      }
    }

    FD->printQualifiedName(POut, Policy);

    POut << "(";
    if (FT) {
      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
        if (i) POut << ", ";
        POut << Decl->getParamDecl(i)->getType().stream(Policy);
      }

      if (FT->isVariadic()) {
        if (FD->getNumParams()) POut << ", ";
        POut << "...";
      } else if ((IK == FuncSig || IK == LFuncSig ||
                  !Context.getLangOpts().CPlusPlus) &&
                 !Decl->getNumParams()) {
        POut << "void";
      }
    }
    POut << ")";

    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      assert(FT && "We must have a written prototype in this case.");
      if (FT->isConst())
        POut << " const";
      if (FT->isVolatile())
        POut << " volatile";
      RefQualifierKind Ref = MD->getRefQualifier();
      if (Ref == RQ_LValue)
        POut << " &";
      else if (Ref == RQ_RValue)
        POut << " &&";
    }

    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
    SpecsTy Specs;
    const DeclContext *Ctx = FD->getDeclContext();
    while (Ctx && isa<NamedDecl>(Ctx)) {
      const ClassTemplateSpecializationDecl *Spec
                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
      if (Spec && !Spec->isExplicitSpecialization())
        Specs.push_back(Spec);
      Ctx = Ctx->getParent();
    }

    std::string TemplateParams;
    llvm::raw_string_ostream TOut(TemplateParams);
    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
         I != E; ++I) {
      const TemplateParameterList *Params
                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
      assert(Params->size() == Args.size());
      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
        StringRef Param = Params->getParam(i)->getName();
        if (Param.empty()) continue;
        TOut << Param << " = ";
        Args.get(i).print(Policy, TOut);
        TOut << ", ";
      }
    }

    FunctionTemplateSpecializationInfo *FSI
                                          = FD->getTemplateSpecializationInfo();
    if (FSI && !FSI->isExplicitSpecialization()) {
      const TemplateParameterList* Params
                                  = FSI->getTemplate()->getTemplateParameters();
      const TemplateArgumentList* Args = FSI->TemplateArguments;
      assert(Params->size() == Args->size());
      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
        StringRef Param = Params->getParam(i)->getName();
        if (Param.empty()) continue;
        TOut << Param << " = ";
        Args->get(i).print(Policy, TOut);
        TOut << ", ";
      }
    }

    TOut.flush();
    if (!TemplateParams.empty()) {
      // remove the trailing comma and space
      TemplateParams.resize(TemplateParams.size() - 2);
      POut << " [" << TemplateParams << "]";
    }

    POut.flush();

    // Print "auto" for all deduced return types. This includes C++1y return
    // type deduction and lambdas. For trailing return types resolve the
    // decltype expression. Otherwise print the real type when this is
    // not a constructor or destructor.
    if (isa<CXXMethodDecl>(FD) &&
         cast<CXXMethodDecl>(FD)->getParent()->isLambda())
      Proto = "auto " + Proto;
    else if (FT && FT->getReturnType()->getAs<DecltypeType>())
      FT->getReturnType()
          ->getAs<DecltypeType>()
          ->getUnderlyingType()
          .getAsStringInternal(Proto, Policy);
    else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
      AFT->getReturnType().getAsStringInternal(Proto, Policy);

    Out << Proto;

    return Name.str().str();
  }
  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
    for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
      // Skip to its enclosing function or method, but not its enclosing
      // CapturedDecl.
      if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
        const Decl *D = Decl::castFromDeclContext(DC);
        return ComputeName(IK, D);
      }
    llvm_unreachable("CapturedDecl not inside a function or method");
  }
  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    SmallString<256> Name;
    llvm::raw_svector_ostream Out(Name);
    Out << (MD->isInstanceMethod() ? '-' : '+');
    Out << '[';

    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    // a null check to avoid a crash.
    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
      Out << *ID;

    if (const ObjCCategoryImplDecl *CID =
        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
      Out << '(' << *CID << ')';

    Out <<  ' ';
    MD->getSelector().print(Out);
    Out <<  ']';

    return Name.str().str();
  }
  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    return "top level";
  }
  return "";
}

void APNumericStorage::setIntValue(const ASTContext &C,
                                   const llvm::APInt &Val) {
  if (hasAllocation())
    C.Deallocate(pVal);

  BitWidth = Val.getBitWidth();
  unsigned NumWords = Val.getNumWords();
  const uint64_t* Words = Val.getRawData();
  if (NumWords > 1) {
    pVal = new (C) uint64_t[NumWords];
    std::copy(Words, Words + NumWords, pVal);
  } else if (NumWords == 1)
    VAL = Words[0];
  else
    VAL = 0;
}

IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
                               QualType type, SourceLocation l)
  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
         false, false),
    Loc(l) {
  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
  assert(V.getBitWidth() == C.getIntWidth(type) &&
         "Integer type is not the correct size for constant.");
  setValue(C, V);
}

IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
                       QualType type, SourceLocation l) {
  return new (C) IntegerLiteral(C, V, type, l);
}

IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  return new (C) IntegerLiteral(Empty);
}

FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
                                     QualType type, SourceLocation l,
                                     unsigned Scale)
    : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
           false, false),
      Loc(l), Scale(Scale) {
  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
         "Fixed point type is not the correct size for constant.");
  setValue(C, V);
}

FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
                                                       const llvm::APInt &V,
                                                       QualType type,
                                                       SourceLocation l,
                                                       unsigned Scale) {
  return new (C) FixedPointLiteral(C, V, type, l, Scale);
}

std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
  // Currently the longest decimal number that can be printed is the max for an
  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
  // which is 43 characters.
  SmallString<64> S;
  FixedPointValueToString(
      S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
  return S.str();
}

FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
                                 bool isexact, QualType Type, SourceLocation L)
  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
         false, false), Loc(L) {
  setSemantics(V.getSemantics());
  FloatingLiteralBits.IsExact = isexact;
  setValue(C, V);
}

FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
  : Expr(FloatingLiteralClass, Empty) {
  setRawSemantics(IEEEhalf);
  FloatingLiteralBits.IsExact = false;
}

FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
                        bool isexact, QualType Type, SourceLocation L) {
  return new (C) FloatingLiteral(C, V, isexact, Type, L);
}

FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  return new (C) FloatingLiteral(C, Empty);
}

const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
  switch(FloatingLiteralBits.Semantics) {
  case IEEEhalf:
    return llvm::APFloat::IEEEhalf();
  case IEEEsingle:
    return llvm::APFloat::IEEEsingle();
  case IEEEdouble:
    return llvm::APFloat::IEEEdouble();
  case x87DoubleExtended:
    return llvm::APFloat::x87DoubleExtended();
  case IEEEquad:
    return llvm::APFloat::IEEEquad();
  case PPCDoubleDouble:
    return llvm::APFloat::PPCDoubleDouble();
  }
  llvm_unreachable("Unrecognised floating semantics");
}

void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
  if (&Sem == &llvm::APFloat::IEEEhalf())
    FloatingLiteralBits.Semantics = IEEEhalf;
  else if (&Sem == &llvm::APFloat::IEEEsingle())
    FloatingLiteralBits.Semantics = IEEEsingle;
  else if (&Sem == &llvm::APFloat::IEEEdouble())
    FloatingLiteralBits.Semantics = IEEEdouble;
  else if (&Sem == &llvm::APFloat::x87DoubleExtended())
    FloatingLiteralBits.Semantics = x87DoubleExtended;
  else if (&Sem == &llvm::APFloat::IEEEquad())
    FloatingLiteralBits.Semantics = IEEEquad;
  else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
    FloatingLiteralBits.Semantics = PPCDoubleDouble;
  else
    llvm_unreachable("Unknown floating semantics");
}

/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double.  Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double FloatingLiteral::getValueAsApproximateDouble() const {
  llvm::APFloat V = getValue();
  bool ignored;
  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
            &ignored);
  return V.convertToDouble();
}

unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
                                         StringKind SK) {
  unsigned CharByteWidth = 0;
  switch (SK) {
  case Ascii:
  case UTF8:
    CharByteWidth = Target.getCharWidth();
    break;
  case Wide:
    CharByteWidth = Target.getWCharWidth();
    break;
  case UTF16:
    CharByteWidth = Target.getChar16Width();
    break;
  case UTF32:
    CharByteWidth = Target.getChar32Width();
    break;
  }
  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
  CharByteWidth /= 8;
  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
         "The only supported character byte widths are 1,2 and 4!");
  return CharByteWidth;
}

StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
                             StringKind Kind, bool Pascal, QualType Ty,
                             const SourceLocation *Loc,
                             unsigned NumConcatenated)
    : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
           false) {
  assert(Ctx.getAsConstantArrayType(Ty) &&
         "StringLiteral must be of constant array type!");
  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
  unsigned ByteLength = Str.size();
  assert((ByteLength % CharByteWidth == 0) &&
         "The size of the data must be a multiple of CharByteWidth!");

  // Avoid the expensive division. The compiler should be able to figure it
  // out by itself. However as of clang 7, even with the appropriate
  // llvm_unreachable added just here, it is not able to do so.
  unsigned Length;
  switch (CharByteWidth) {
  case 1:
    Length = ByteLength;
    break;
  case 2:
    Length = ByteLength / 2;
    break;
  case 4:
    Length = ByteLength / 4;
    break;
  default:
    llvm_unreachable("Unsupported character width!");
  }

  StringLiteralBits.Kind = Kind;
  StringLiteralBits.CharByteWidth = CharByteWidth;
  StringLiteralBits.IsPascal = Pascal;
  StringLiteralBits.NumConcatenated = NumConcatenated;
  *getTrailingObjects<unsigned>() = Length;

  // Initialize the trailing array of SourceLocation.
  // This is safe since SourceLocation is POD-like.
  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
              NumConcatenated * sizeof(SourceLocation));

  // Initialize the trailing array of char holding the string data.
  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
}

StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
                             unsigned Length, unsigned CharByteWidth)
    : Expr(StringLiteralClass, Empty) {
  StringLiteralBits.CharByteWidth = CharByteWidth;
  StringLiteralBits.NumConcatenated = NumConcatenated;
  *getTrailingObjects<unsigned>() = Length;
}

StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
                                     StringKind Kind, bool Pascal, QualType Ty,
                                     const SourceLocation *Loc,
                                     unsigned NumConcatenated) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
                               1, NumConcatenated, Str.size()),
                           alignof(StringLiteral));
  return new (Mem)
      StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
}

StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
                                          unsigned NumConcatenated,
                                          unsigned Length,
                                          unsigned CharByteWidth) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
                               1, NumConcatenated, Length * CharByteWidth),
                           alignof(StringLiteral));
  return new (Mem)
      StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
}

void StringLiteral::outputString(raw_ostream &OS) const {
  switch (getKind()) {
  case Ascii: break; // no prefix.
  case Wide:  OS << 'L'; break;
  case UTF8:  OS << "u8"; break;
  case UTF16: OS << 'u'; break;
  case UTF32: OS << 'U'; break;
  }
  OS << '"';
  static const char Hex[] = "0123456789ABCDEF";

  unsigned LastSlashX = getLength();
  for (unsigned I = 0, N = getLength(); I != N; ++I) {
    switch (uint32_t Char = getCodeUnit(I)) {
    default:
      // FIXME: Convert UTF-8 back to codepoints before rendering.

      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
      // Leave invalid surrogates alone; we'll use \x for those.
      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
          Char <= 0xdbff) {
        uint32_t Trail = getCodeUnit(I + 1);
        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
          ++I;
        }
      }

      if (Char > 0xff) {
        // If this is a wide string, output characters over 0xff using \x
        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
        // codepoint: use \x escapes for invalid codepoints.
        if (getKind() == Wide ||
            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
          // FIXME: Is this the best way to print wchar_t?
          OS << "\\x";
          int Shift = 28;
          while ((Char >> Shift) == 0)
            Shift -= 4;
          for (/**/; Shift >= 0; Shift -= 4)
            OS << Hex[(Char >> Shift) & 15];
          LastSlashX = I;
          break;
        }

        if (Char > 0xffff)
          OS << "\\U00"
             << Hex[(Char >> 20) & 15]
             << Hex[(Char >> 16) & 15];
        else
          OS << "\\u";
        OS << Hex[(Char >> 12) & 15]
           << Hex[(Char >>  8) & 15]
           << Hex[(Char >>  4) & 15]
           << Hex[(Char >>  0) & 15];
        break;
      }

      // If we used \x... for the previous character, and this character is a
      // hexadecimal digit, prevent it being slurped as part of the \x.
      if (LastSlashX + 1 == I) {
        switch (Char) {
          case '0': case '1': case '2': case '3': case '4':
          case '5': case '6': case '7': case '8': case '9':
          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
            OS << "\"\"";
        }
      }

      assert(Char <= 0xff &&
             "Characters above 0xff should already have been handled.");

      if (isPrintable(Char))
        OS << (char)Char;
      else  // Output anything hard as an octal escape.
        OS << '\\'
           << (char)('0' + ((Char >> 6) & 7))
           << (char)('0' + ((Char >> 3) & 7))
           << (char)('0' + ((Char >> 0) & 7));
      break;
    // Handle some common non-printable cases to make dumps prettier.
    case '\\': OS << "\\\\"; break;
    case '"': OS << "\\\""; break;
    case '\a': OS << "\\a"; break;
    case '\b': OS << "\\b"; break;
    case '\f': OS << "\\f"; break;
    case '\n': OS << "\\n"; break;
    case '\r': OS << "\\r"; break;
    case '\t': OS << "\\t"; break;
    case '\v': OS << "\\v"; break;
    }
  }
  OS << '"';
}

/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex.  They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business.  This routine handles this complexity.
///
/// The *StartToken sets the first token to be searched in this function and
/// the *StartTokenByteOffset is the byte offset of the first token. Before
/// returning, it updates the *StartToken to the TokNo of the token being found
/// and sets *StartTokenByteOffset to the byte offset of the token in the
/// string.
/// Using these two parameters can reduce the time complexity from O(n^2) to
/// O(n) if one wants to get the location of byte for all the tokens in a
/// string.
///
SourceLocation
StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
                                 const LangOptions &Features,
                                 const TargetInfo &Target, unsigned *StartToken,
                                 unsigned *StartTokenByteOffset) const {
  assert((getKind() == StringLiteral::Ascii ||
          getKind() == StringLiteral::UTF8) &&
         "Only narrow string literals are currently supported");

  // Loop over all of the tokens in this string until we find the one that
  // contains the byte we're looking for.
  unsigned TokNo = 0;
  unsigned StringOffset = 0;
  if (StartToken)
    TokNo = *StartToken;
  if (StartTokenByteOffset) {
    StringOffset = *StartTokenByteOffset;
    ByteNo -= StringOffset;
  }
  while (1) {
    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);

    // Get the spelling of the string so that we can get the data that makes up
    // the string literal, not the identifier for the macro it is potentially
    // expanded through.
    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);

    // Re-lex the token to get its length and original spelling.
    std::pair<FileID, unsigned> LocInfo =
        SM.getDecomposedLoc(StrTokSpellingLoc);
    bool Invalid = false;
    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
    if (Invalid) {
      if (StartTokenByteOffset != nullptr)
        *StartTokenByteOffset = StringOffset;
      if (StartToken != nullptr)
        *StartToken = TokNo;
      return StrTokSpellingLoc;
    }

    const char *StrData = Buffer.data()+LocInfo.second;

    // Create a lexer starting at the beginning of this token.
    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
                   Buffer.begin(), StrData, Buffer.end());
    Token TheTok;
    TheLexer.LexFromRawLexer(TheTok);

    // Use the StringLiteralParser to compute the length of the string in bytes.
    StringLiteralParser SLP(TheTok, SM, Features, Target);
    unsigned TokNumBytes = SLP.GetStringLength();

    // If the byte is in this token, return the location of the byte.
    if (ByteNo < TokNumBytes ||
        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);

      // Now that we know the offset of the token in the spelling, use the
      // preprocessor to get the offset in the original source.
      if (StartTokenByteOffset != nullptr)
        *StartTokenByteOffset = StringOffset;
      if (StartToken != nullptr)
        *StartToken = TokNo;
      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
    }

    // Move to the next string token.
    StringOffset += TokNumBytes;
    ++TokNo;
    ByteNo -= TokNumBytes;
  }
}

/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++".
StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
  switch (Op) {
#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
  }
  llvm_unreachable("Unknown unary operator");
}

UnaryOperatorKind
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
  switch (OO) {
  default: llvm_unreachable("No unary operator for overloaded function");
  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
  case OO_Amp:        return UO_AddrOf;
  case OO_Star:       return UO_Deref;
  case OO_Plus:       return UO_Plus;
  case OO_Minus:      return UO_Minus;
  case OO_Tilde:      return UO_Not;
  case OO_Exclaim:    return UO_LNot;
  case OO_Coawait:    return UO_Coawait;
  }
}

OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
  switch (Opc) {
  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
  case UO_AddrOf: return OO_Amp;
  case UO_Deref: return OO_Star;
  case UO_Plus: return OO_Plus;
  case UO_Minus: return OO_Minus;
  case UO_Not: return OO_Tilde;
  case UO_LNot: return OO_Exclaim;
  case UO_Coawait: return OO_Coawait;
  default: return OO_None;
  }
}


//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//

CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
                   ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
                   ExprValueKind VK, SourceLocation rparenloc)
    : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
           fn->isValueDependent(), fn->isInstantiationDependent(),
           fn->containsUnexpandedParameterPack()),
      NumArgs(args.size()) {

  unsigned NumPreArgs = preargs.size();
  SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs];
  SubExprs[FN] = fn;
  for (unsigned i = 0; i != NumPreArgs; ++i) {
    updateDependenciesFromArg(preargs[i]);
    SubExprs[i+PREARGS_START] = preargs[i];
  }
  for (unsigned i = 0; i != args.size(); ++i) {
    updateDependenciesFromArg(args[i]);
    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
  }

  CallExprBits.NumPreArgs = NumPreArgs;
  RParenLoc = rparenloc;
}

CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
                   ArrayRef<Expr *> args, QualType t, ExprValueKind VK,
                   SourceLocation rparenloc)
    : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {}

CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
    : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {
}

CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
    : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}

CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
                   EmptyShell Empty)
  : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
  // FIXME: Why do we allocate this?
  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]();
  CallExprBits.NumPreArgs = NumPreArgs;
}

void CallExpr::updateDependenciesFromArg(Expr *Arg) {
  if (Arg->isTypeDependent())
    ExprBits.TypeDependent = true;
  if (Arg->isValueDependent())
    ExprBits.ValueDependent = true;
  if (Arg->isInstantiationDependent())
    ExprBits.InstantiationDependent = true;
  if (Arg->containsUnexpandedParameterPack())
    ExprBits.ContainsUnexpandedParameterPack = true;
}

FunctionDecl *CallExpr::getDirectCallee() {
  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
}

Decl *CallExpr::getCalleeDecl() {
  return getCallee()->getReferencedDeclOfCallee();
}

Decl *Expr::getReferencedDeclOfCallee() {
  Expr *CEE = IgnoreParenImpCasts();

  while (SubstNonTypeTemplateParmExpr *NTTP
                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
    CEE = NTTP->getReplacement()->IgnoreParenCasts();
  }

  // If we're calling a dereference, look at the pointer instead.
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
    if (BO->isPtrMemOp())
      CEE = BO->getRHS()->IgnoreParenCasts();
  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
    if (UO->getOpcode() == UO_Deref)
      CEE = UO->getSubExpr()->IgnoreParenCasts();
  }
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
    return DRE->getDecl();
  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
    return ME->getMemberDecl();

  return nullptr;
}

/// setNumArgs - This changes the number of arguments present in this call.
/// Any orphaned expressions are deleted by this, and any new operands are set
/// to null.
void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
  // No change, just return.
  if (NumArgs == getNumArgs()) return;

  // If shrinking # arguments, just delete the extras and forgot them.
  if (NumArgs < getNumArgs()) {
    this->NumArgs = NumArgs;
    return;
  }

  // Otherwise, we are growing the # arguments.  New an bigger argument array.
  unsigned NumPreArgs = getNumPreArgs();
  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
  // Copy over args.
  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
    NewSubExprs[i] = SubExprs[i];
  // Null out new args.
  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
    NewSubExprs[i] = nullptr;

  if (SubExprs) C.Deallocate(SubExprs);
  SubExprs = NewSubExprs;
  this->NumArgs = NumArgs;
}

/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
/// not, return 0.
unsigned CallExpr::getBuiltinCallee() const {
  // All simple function calls (e.g. func()) are implicitly cast to pointer to
  // function. As a result, we try and obtain the DeclRefExpr from the
  // ImplicitCastExpr.
  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
    return 0;

  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
  if (!DRE)
    return 0;

  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
  if (!FDecl)
    return 0;

  if (!FDecl->getIdentifier())
    return 0;

  return FDecl->getBuiltinID();
}

bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
  if (unsigned BI = getBuiltinCallee())
    return Ctx.BuiltinInfo.isUnevaluated(BI);
  return false;
}

QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
  const Expr *Callee = getCallee();
  QualType CalleeType = Callee->getType();
  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
    CalleeType = FnTypePtr->getPointeeType();
  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
    CalleeType = BPT->getPointeeType();
  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
    if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
      return Ctx.VoidTy;

    // This should never be overloaded and so should never return null.
    CalleeType = Expr::findBoundMemberType(Callee);
  }

  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
  return FnType->getReturnType();
}

SourceLocation CallExpr::getBeginLoc() const {
  if (isa<CXXOperatorCallExpr>(this))
    return cast<CXXOperatorCallExpr>(this)->getBeginLoc();

  SourceLocation begin = getCallee()->getBeginLoc();
  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
    begin = getArg(0)->getBeginLoc();
  return begin;
}
SourceLocation CallExpr::getEndLoc() const {
  if (isa<CXXOperatorCallExpr>(this))
    return cast<CXXOperatorCallExpr>(this)->getEndLoc();

  SourceLocation end = getRParenLoc();
  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
    end = getArg(getNumArgs() - 1)->getEndLoc();
  return end;
}

OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
                                   SourceLocation OperatorLoc,
                                   TypeSourceInfo *tsi,
                                   ArrayRef<OffsetOfNode> comps,
                                   ArrayRef<Expr*> exprs,
                                   SourceLocation RParenLoc) {
  void *Mem = C.Allocate(
      totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));

  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
                                RParenLoc);
}

OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
                                        unsigned numComps, unsigned numExprs) {
  void *Mem =
      C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
  return new (Mem) OffsetOfExpr(numComps, numExprs);
}

OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
                           SourceLocation RParenLoc)
  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
         /*TypeDependent=*/false,
         /*ValueDependent=*/tsi->getType()->isDependentType(),
         tsi->getType()->isInstantiationDependentType(),
         tsi->getType()->containsUnexpandedParameterPack()),
    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
    NumComps(comps.size()), NumExprs(exprs.size())
{
  for (unsigned i = 0; i != comps.size(); ++i) {
    setComponent(i, comps[i]);
  }

  for (unsigned i = 0; i != exprs.size(); ++i) {
    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (exprs[i]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    setIndexExpr(i, exprs[i]);
  }
}

IdentifierInfo *OffsetOfNode::getFieldName() const {
  assert(getKind() == Field || getKind() == Identifier);
  if (getKind() == Field)
    return getField()->getIdentifier();

  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
}

UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
    UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
    SourceLocation op, SourceLocation rp)
    : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
           false, // Never type-dependent (C++ [temp.dep.expr]p3).
           // Value-dependent if the argument is type-dependent.
           E->isTypeDependent(), E->isInstantiationDependent(),
           E->containsUnexpandedParameterPack()),
      OpLoc(op), RParenLoc(rp) {
  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
  UnaryExprOrTypeTraitExprBits.IsType = false;
  Argument.Ex = E;

  // Check to see if we are in the situation where alignof(decl) should be
  // dependent because decl's alignment is dependent.
  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
    if (!isValueDependent() || !isInstantiationDependent()) {
      E = E->IgnoreParens();

      const ValueDecl *D = nullptr;
      if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
        D = DRE->getDecl();
      else if (const auto *ME = dyn_cast<MemberExpr>(E))
        D = ME->getMemberDecl();

      if (D) {
        for (const auto *I : D->specific_attrs<AlignedAttr>()) {
          if (I->isAlignmentDependent()) {
            setValueDependent(true);
            setInstantiationDependent(true);
            break;
          }
        }
      }
    }
  }
}

MemberExpr *MemberExpr::Create(
    const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
    NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
    ValueDecl *memberdecl, DeclAccessPair founddecl,
    DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
    QualType ty, ExprValueKind vk, ExprObjectKind ok) {

  bool hasQualOrFound = (QualifierLoc ||
                         founddecl.getDecl() != memberdecl ||
                         founddecl.getAccess() != memberdecl->getAccess());

  bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
  std::size_t Size =
      totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
                       TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
                                            HasTemplateKWAndArgsInfo ? 1 : 0,
                                            targs ? targs->size() : 0);

  void *Mem = C.Allocate(Size, alignof(MemberExpr));
  MemberExpr *E = new (Mem)
      MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);

  if (hasQualOrFound) {
    // FIXME: Wrong. We should be looking at the member declaration we found.
    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
      E->setValueDependent(true);
      E->setTypeDependent(true);
      E->setInstantiationDependent(true);
    }
    else if (QualifierLoc &&
             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
      E->setInstantiationDependent(true);

    E->MemberExprBits.HasQualifierOrFoundDecl = true;

    MemberExprNameQualifier *NQ =
        E->getTrailingObjects<MemberExprNameQualifier>();
    NQ->QualifierLoc = QualifierLoc;
    NQ->FoundDecl = founddecl;
  }

  E->MemberExprBits.HasTemplateKWAndArgsInfo =
      (targs || TemplateKWLoc.isValid());

  if (targs) {
    bool Dependent = false;
    bool InstantiationDependent = false;
    bool ContainsUnexpandedParameterPack = false;
    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
        Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
    if (InstantiationDependent)
      E->setInstantiationDependent(true);
  } else if (TemplateKWLoc.isValid()) {
    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
        TemplateKWLoc);
  }

  return E;
}

SourceLocation MemberExpr::getBeginLoc() const {
  if (isImplicitAccess()) {
    if (hasQualifier())
      return getQualifierLoc().getBeginLoc();
    return MemberLoc;
  }

  // FIXME: We don't want this to happen. Rather, we should be able to
  // detect all kinds of implicit accesses more cleanly.
  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
  if (BaseStartLoc.isValid())
    return BaseStartLoc;
  return MemberLoc;
}
SourceLocation MemberExpr::getEndLoc() const {
  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
  if (hasExplicitTemplateArgs())
    EndLoc = getRAngleLoc();
  else if (EndLoc.isInvalid())
    EndLoc = getBase()->getEndLoc();
  return EndLoc;
}

bool CastExpr::CastConsistency() const {
  switch (getCastKind()) {
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_DerivedToBaseMemberPointer:
  case CK_BaseToDerived:
  case CK_BaseToDerivedMemberPointer:
    assert(!path_empty() && "Cast kind should have a base path!");
    break;

  case CK_CPointerToObjCPointerCast:
    assert(getType()->isObjCObjectPointerType());
    assert(getSubExpr()->getType()->isPointerType());
    goto CheckNoBasePath;

  case CK_BlockPointerToObjCPointerCast:
    assert(getType()->isObjCObjectPointerType());
    assert(getSubExpr()->getType()->isBlockPointerType());
    goto CheckNoBasePath;

  case CK_ReinterpretMemberPointer:
    assert(getType()->isMemberPointerType());
    assert(getSubExpr()->getType()->isMemberPointerType());
    goto CheckNoBasePath;

  case CK_BitCast:
    // Arbitrary casts to C pointer types count as bitcasts.
    // Otherwise, we should only have block and ObjC pointer casts
    // here if they stay within the type kind.
    if (!getType()->isPointerType()) {
      assert(getType()->isObjCObjectPointerType() ==
             getSubExpr()->getType()->isObjCObjectPointerType());
      assert(getType()->isBlockPointerType() ==
             getSubExpr()->getType()->isBlockPointerType());
    }
    goto CheckNoBasePath;

  case CK_AnyPointerToBlockPointerCast:
    assert(getType()->isBlockPointerType());
    assert(getSubExpr()->getType()->isAnyPointerType() &&
           !getSubExpr()->getType()->isBlockPointerType());
    goto CheckNoBasePath;

  case CK_CopyAndAutoreleaseBlockObject:
    assert(getType()->isBlockPointerType());
    assert(getSubExpr()->getType()->isBlockPointerType());
    goto CheckNoBasePath;

  case CK_FunctionToPointerDecay:
    assert(getType()->isPointerType());
    assert(getSubExpr()->getType()->isFunctionType());
    goto CheckNoBasePath;

  case CK_AddressSpaceConversion: {
    auto Ty = getType();
    auto SETy = getSubExpr()->getType();
    assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
    if (!isGLValue())
      Ty = Ty->getPointeeType();
    if (!isGLValue())
      SETy = SETy->getPointeeType();
    assert(!Ty.isNull() && !SETy.isNull() &&
           Ty.getAddressSpace() != SETy.getAddressSpace());
    goto CheckNoBasePath;
  }
  // These should not have an inheritance path.
  case CK_Dynamic:
  case CK_ToUnion:
  case CK_ArrayToPointerDecay:
  case CK_NullToMemberPointer:
  case CK_NullToPointer:
  case CK_ConstructorConversion:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_BooleanToSignedIntegral:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingRealToComplex:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
  case CK_ZeroToOCLOpaqueType:
  case CK_IntToOCLSampler:
  case CK_FixedPointCast:
    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
    goto CheckNoBasePath;

  case CK_Dependent:
  case CK_LValueToRValue:
  case CK_NoOp:
  case CK_AtomicToNonAtomic:
  case CK_NonAtomicToAtomic:
  case CK_PointerToBoolean:
  case CK_IntegralToBoolean:
  case CK_FloatingToBoolean:
  case CK_MemberPointerToBoolean:
  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToBoolean:
  case CK_LValueBitCast:            // -> bool&
  case CK_UserDefinedConversion:    // operator bool()
  case CK_BuiltinFnToFnPtr:
  case CK_FixedPointToBoolean:
  CheckNoBasePath:
    assert(path_empty() && "Cast kind should not have a base path!");
    break;
  }
  return true;
}

const char *CastExpr::getCastKindName(CastKind CK) {
  switch (CK) {
#define CAST_OPERATION(Name) case CK_##Name: return #Name;
#include "clang/AST/OperationKinds.def"
  }
  llvm_unreachable("Unhandled cast kind!");
}

namespace {
  const Expr *skipImplicitTemporary(const Expr *E) {
    // Skip through reference binding to temporary.
    if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
      E = Materialize->GetTemporaryExpr();

    // Skip any temporary bindings; they're implicit.
    if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
      E = Binder->getSubExpr();

    return E;
  }
}

Expr *CastExpr::getSubExprAsWritten() {
  const Expr *SubExpr = nullptr;
  const CastExpr *E = this;
  do {
    SubExpr = skipImplicitTemporary(E->getSubExpr());

    // Conversions by constructor and conversion functions have a
    // subexpression describing the call; strip it off.
    if (E->getCastKind() == CK_ConstructorConversion)
      SubExpr =
        skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
    else if (E->getCastKind() == CK_UserDefinedConversion) {
      assert((isa<CXXMemberCallExpr>(SubExpr) ||
              isa<BlockExpr>(SubExpr)) &&
             "Unexpected SubExpr for CK_UserDefinedConversion.");
      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
        SubExpr = MCE->getImplicitObjectArgument();
    }

    // If the subexpression we're left with is an implicit cast, look
    // through that, too.
  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));

  return const_cast<Expr*>(SubExpr);
}

NamedDecl *CastExpr::getConversionFunction() const {
  const Expr *SubExpr = nullptr;

  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
    SubExpr = skipImplicitTemporary(E->getSubExpr());

    if (E->getCastKind() == CK_ConstructorConversion)
      return cast<CXXConstructExpr>(SubExpr)->getConstructor();

    if (E->getCastKind() == CK_UserDefinedConversion) {
      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
        return MCE->getMethodDecl();
    }
  }

  return nullptr;
}

CastExpr::BasePathSizeTy *CastExpr::BasePathSize() {
  assert(!path_empty());
  switch (getStmtClass()) {
#define ABSTRACT_STMT(x)
#define CASTEXPR(Type, Base)                                                   \
  case Stmt::Type##Class:                                                      \
    return static_cast<Type *>(this)                                           \
        ->getTrailingObjects<CastExpr::BasePathSizeTy>();
#define STMT(Type, Base)
#include "clang/AST/StmtNodes.inc"
  default:
    llvm_unreachable("non-cast expressions not possible here");
  }
}

CXXBaseSpecifier **CastExpr::path_buffer() {
  switch (getStmtClass()) {
#define ABSTRACT_STMT(x)
#define CASTEXPR(Type, Base)                                                   \
  case Stmt::Type##Class:                                                      \
    return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
#define STMT(Type, Base)
#include "clang/AST/StmtNodes.inc"
  default:
    llvm_unreachable("non-cast expressions not possible here");
  }
}

const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
                                                        QualType opType) {
  auto RD = unionType->castAs<RecordType>()->getDecl();
  return getTargetFieldForToUnionCast(RD, opType);
}

const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
                                                        QualType OpType) {
  auto &Ctx = RD->getASTContext();
  RecordDecl::field_iterator Field, FieldEnd;
  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
       Field != FieldEnd; ++Field) {
    if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
        !Field->isUnnamedBitfield()) {
      return *Field;
    }
  }
  return nullptr;
}

ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
                                           CastKind Kind, Expr *Operand,
                                           const CXXCastPath *BasePath,
                                           ExprValueKind VK) {
  unsigned PathSize = (BasePath ? BasePath->size() : 0);
  void *Buffer =
      C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
          PathSize ? 1 : 0, PathSize));
  ImplicitCastExpr *E =
    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
  if (PathSize)
    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
                              E->getTrailingObjects<CXXBaseSpecifier *>());
  return E;
}

ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
                                                unsigned PathSize) {
  void *Buffer =
      C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
          PathSize ? 1 : 0, PathSize));
  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
}


CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
                                       ExprValueKind VK, CastKind K, Expr *Op,
                                       const CXXCastPath *BasePath,
                                       TypeSourceInfo *WrittenTy,
                                       SourceLocation L, SourceLocation R) {
  unsigned PathSize = (BasePath ? BasePath->size() : 0);
  void *Buffer =
      C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
          PathSize ? 1 : 0, PathSize));
  CStyleCastExpr *E =
    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
  if (PathSize)
    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
                              E->getTrailingObjects<CXXBaseSpecifier *>());
  return E;
}

CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
                                            unsigned PathSize) {
  void *Buffer =
      C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
          PathSize ? 1 : 0, PathSize));
  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
}

/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
  switch (Op) {
#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
  }
  llvm_unreachable("Invalid OpCode!");
}

BinaryOperatorKind
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
  switch (OO) {
  default: llvm_unreachable("Not an overloadable binary operator");
  case OO_Plus: return BO_Add;
  case OO_Minus: return BO_Sub;
  case OO_Star: return BO_Mul;
  case OO_Slash: return BO_Div;
  case OO_Percent: return BO_Rem;
  case OO_Caret: return BO_Xor;
  case OO_Amp: return BO_And;
  case OO_Pipe: return BO_Or;
  case OO_Equal: return BO_Assign;
  case OO_Spaceship: return BO_Cmp;
  case OO_Less: return BO_LT;
  case OO_Greater: return BO_GT;
  case OO_PlusEqual: return BO_AddAssign;
  case OO_MinusEqual: return BO_SubAssign;
  case OO_StarEqual: return BO_MulAssign;
  case OO_SlashEqual: return BO_DivAssign;
  case OO_PercentEqual: return BO_RemAssign;
  case OO_CaretEqual: return BO_XorAssign;
  case OO_AmpEqual: return BO_AndAssign;
  case OO_PipeEqual: return BO_OrAssign;
  case OO_LessLess: return BO_Shl;
  case OO_GreaterGreater: return BO_Shr;
  case OO_LessLessEqual: return BO_ShlAssign;
  case OO_GreaterGreaterEqual: return BO_ShrAssign;
  case OO_EqualEqual: return BO_EQ;
  case OO_ExclaimEqual: return BO_NE;
  case OO_LessEqual: return BO_LE;
  case OO_GreaterEqual: return BO_GE;
  case OO_AmpAmp: return BO_LAnd;
  case OO_PipePipe: return BO_LOr;
  case OO_Comma: return BO_Comma;
  case OO_ArrowStar: return BO_PtrMemI;
  }
}

OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
  static const OverloadedOperatorKind OverOps[] = {
    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
    OO_Star, OO_Slash, OO_Percent,
    OO_Plus, OO_Minus,
    OO_LessLess, OO_GreaterGreater,
    OO_Spaceship,
    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
    OO_EqualEqual, OO_ExclaimEqual,
    OO_Amp,
    OO_Caret,
    OO_Pipe,
    OO_AmpAmp,
    OO_PipePipe,
    OO_Equal, OO_StarEqual,
    OO_SlashEqual, OO_PercentEqual,
    OO_PlusEqual, OO_MinusEqual,
    OO_LessLessEqual, OO_GreaterGreaterEqual,
    OO_AmpEqual, OO_CaretEqual,
    OO_PipeEqual,
    OO_Comma
  };
  return OverOps[Opc];
}

bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
                                                      Opcode Opc,
                                                      Expr *LHS, Expr *RHS) {
  if (Opc != BO_Add)
    return false;

  // Check that we have one pointer and one integer operand.
  Expr *PExp;
  if (LHS->getType()->isPointerType()) {
    if (!RHS->getType()->isIntegerType())
      return false;
    PExp = LHS;
  } else if (RHS->getType()->isPointerType()) {
    if (!LHS->getType()->isIntegerType())
      return false;
    PExp = RHS;
  } else {
    return false;
  }

  // Check that the pointer is a nullptr.
  if (!PExp->IgnoreParenCasts()
          ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
    return false;

  // Check that the pointee type is char-sized.
  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
  if (!PTy || !PTy->getPointeeType()->isCharType())
    return false;

  return true;
}
InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
         false, false),
    InitExprs(C, initExprs.size()),
    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
{
  sawArrayRangeDesignator(false);
  for (unsigned I = 0; I != initExprs.size(); ++I) {
    if (initExprs[I]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (initExprs[I]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (initExprs[I]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (initExprs[I]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;
  }

  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
}

void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
  if (NumInits > InitExprs.size())
    InitExprs.reserve(C, NumInits);
}

void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
  InitExprs.resize(C, NumInits, nullptr);
}

Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
  if (Init >= InitExprs.size()) {
    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
    setInit(Init, expr);
    return nullptr;
  }

  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
  setInit(Init, expr);
  return Result;
}

void InitListExpr::setArrayFiller(Expr *filler) {
  assert(!hasArrayFiller() && "Filler already set!");
  ArrayFillerOrUnionFieldInit = filler;
  // Fill out any "holes" in the array due to designated initializers.
  Expr **inits = getInits();
  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
    if (inits[i] == nullptr)
      inits[i] = filler;
}

bool InitListExpr::isStringLiteralInit() const {
  if (getNumInits() != 1)
    return false;
  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
  if (!AT || !AT->getElementType()->isIntegerType())
    return false;
  // It is possible for getInit() to return null.
  const Expr *Init = getInit(0);
  if (!Init)
    return false;
  Init = Init->IgnoreParens();
  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
}

bool InitListExpr::isTransparent() const {
  assert(isSemanticForm() && "syntactic form never semantically transparent");

  // A glvalue InitListExpr is always just sugar.
  if (isGLValue()) {
    assert(getNumInits() == 1 && "multiple inits in glvalue init list");
    return true;
  }

  // Otherwise, we're sugar if and only if we have exactly one initializer that
  // is of the same type.
  if (getNumInits() != 1 || !getInit(0))
    return false;

  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
  // transparent struct copy.
  if (!getInit(0)->isRValue() && getType()->isRecordType())
    return false;

  return getType().getCanonicalType() ==
         getInit(0)->getType().getCanonicalType();
}

bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
  assert(isSyntacticForm() && "only test syntactic form as zero initializer");

  if (LangOpts.CPlusPlus || getNumInits() != 1) {
    return false;
  }

  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0));
  return Lit && Lit->getValue() == 0;
}

SourceLocation InitListExpr::getBeginLoc() const {
  if (InitListExpr *SyntacticForm = getSyntacticForm())
    return SyntacticForm->getBeginLoc();
  SourceLocation Beg = LBraceLoc;
  if (Beg.isInvalid()) {
    // Find the first non-null initializer.
    for (InitExprsTy::const_iterator I = InitExprs.begin(),
                                     E = InitExprs.end();
      I != E; ++I) {
      if (Stmt *S = *I) {
        Beg = S->getBeginLoc();
        break;
      }
    }
  }
  return Beg;
}

SourceLocation InitListExpr::getEndLoc() const {
  if (InitListExpr *SyntacticForm = getSyntacticForm())
    return SyntacticForm->getEndLoc();
  SourceLocation End = RBraceLoc;
  if (End.isInvalid()) {
    // Find the first non-null initializer from the end.
    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
         E = InitExprs.rend();
         I != E; ++I) {
      if (Stmt *S = *I) {
        End = S->getEndLoc();
        break;
      }
    }
  }
  return End;
}

/// getFunctionType - Return the underlying function type for this block.
///
const FunctionProtoType *BlockExpr::getFunctionType() const {
  // The block pointer is never sugared, but the function type might be.
  return cast<BlockPointerType>(getType())
           ->getPointeeType()->castAs<FunctionProtoType>();
}

SourceLocation BlockExpr::getCaretLocation() const {
  return TheBlock->getCaretLocation();
}
const Stmt *BlockExpr::getBody() const {
  return TheBlock->getBody();
}
Stmt *BlockExpr::getBody() {
  return TheBlock->getBody();
}


//===----------------------------------------------------------------------===//
// Generic Expression Routines
//===----------------------------------------------------------------------===//

/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused.  If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
                                  SourceRange &R1, SourceRange &R2,
                                  ASTContext &Ctx) const {
  // Don't warn if the expr is type dependent. The type could end up
  // instantiating to void.
  if (isTypeDependent())
    return false;

  switch (getStmtClass()) {
  default:
    if (getType()->isVoidType())
      return false;
    WarnE = this;
    Loc = getExprLoc();
    R1 = getSourceRange();
    return true;
  case ParenExprClass:
    return cast<ParenExpr>(this)->getSubExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case GenericSelectionExprClass:
    return cast<GenericSelectionExpr>(this)->getResultExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case CoawaitExprClass:
  case CoyieldExprClass:
    return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case ChooseExprClass:
    return cast<ChooseExpr>(this)->getChosenSubExpr()->
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case UnaryOperatorClass: {
    const UnaryOperator *UO = cast<UnaryOperator>(this);

    switch (UO->getOpcode()) {
    case UO_Plus:
    case UO_Minus:
    case UO_AddrOf:
    case UO_Not:
    case UO_LNot:
    case UO_Deref:
      break;
    case UO_Coawait:
      // This is just the 'operator co_await' call inside the guts of a
      // dependent co_await call.
    case UO_PostInc:
    case UO_PostDec:
    case UO_PreInc:
    case UO_PreDec:                 // ++/--
      return false;  // Not a warning.
    case UO_Real:
    case UO_Imag:
      // accessing a piece of a volatile complex is a side-effect.
      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
          .isVolatileQualified())
        return false;
      break;
    case UO_Extension:
      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
    }
    WarnE = this;
    Loc = UO->getOperatorLoc();
    R1 = UO->getSubExpr()->getSourceRange();
    return true;
  }
  case BinaryOperatorClass: {
    const BinaryOperator *BO = cast<BinaryOperator>(this);
    switch (BO->getOpcode()) {
      default:
        break;
      // Consider the RHS of comma for side effects. LHS was checked by
      // Sema::CheckCommaOperands.
      case BO_Comma:
        // ((foo = <blah>), 0) is an idiom for hiding the result (and
        // lvalue-ness) of an assignment written in a macro.
        if (IntegerLiteral *IE =
              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
          if (IE->getValue() == 0)
            return false;
        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
      // Consider '||', '&&' to have side effects if the LHS or RHS does.
      case BO_LAnd:
      case BO_LOr:
        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
          return false;
        break;
    }
    if (BO->isAssignmentOp())
      return false;
    WarnE = this;
    Loc = BO->getOperatorLoc();
    R1 = BO->getLHS()->getSourceRange();
    R2 = BO->getRHS()->getSourceRange();
    return true;
  }
  case CompoundAssignOperatorClass:
  case VAArgExprClass:
  case AtomicExprClass:
    return false;

  case ConditionalOperatorClass: {
    // If only one of the LHS or RHS is a warning, the operator might
    // be being used for control flow. Only warn if both the LHS and
    // RHS are warnings.
    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
      return false;
    if (!Exp->getLHS())
      return true;
    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  }

  case MemberExprClass:
    WarnE = this;
    Loc = cast<MemberExpr>(this)->getMemberLoc();
    R1 = SourceRange(Loc, Loc);
    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
    return true;

  case ArraySubscriptExprClass:
    WarnE = this;
    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
    return true;

  case CXXOperatorCallExprClass: {
    // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
    // overloads as there is no reasonable way to define these such that they
    // have non-trivial, desirable side-effects. See the -Wunused-comparison
    // warning: operators == and != are commonly typo'ed, and so warning on them
    // provides additional value as well. If this list is updated,
    // DiagnoseUnusedComparison should be as well.
    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
    switch (Op->getOperator()) {
    default:
      break;
    case OO_EqualEqual:
    case OO_ExclaimEqual:
    case OO_Less:
    case OO_Greater:
    case OO_GreaterEqual:
    case OO_LessEqual:
      if (Op->getCallReturnType(Ctx)->isReferenceType() ||
          Op->getCallReturnType(Ctx)->isVoidType())
        break;
      WarnE = this;
      Loc = Op->getOperatorLoc();
      R1 = Op->getSourceRange();
      return true;
    }

    // Fallthrough for generic call handling.
    LLVM_FALLTHROUGH;
  }
  case CallExprClass:
  case CXXMemberCallExprClass:
  case UserDefinedLiteralClass: {
    // If this is a direct call, get the callee.
    const CallExpr *CE = cast<CallExpr>(this);
    if (const Decl *FD = CE->getCalleeDecl()) {
      const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
      bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
                                          : FD->hasAttr<WarnUnusedResultAttr>();

      // If the callee has attribute pure, const, or warn_unused_result, warn
      // about it. void foo() { strlen("bar"); } should warn.
      //
      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
      // updated to match for QoI.
      if (HasWarnUnusedResultAttr ||
          FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
        WarnE = this;
        Loc = CE->getCallee()->getBeginLoc();
        R1 = CE->getCallee()->getSourceRange();

        if (unsigned NumArgs = CE->getNumArgs())
          R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
                           CE->getArg(NumArgs - 1)->getEndLoc());
        return true;
      }
    }
    return false;
  }

  // If we don't know precisely what we're looking at, let's not warn.
  case UnresolvedLookupExprClass:
  case CXXUnresolvedConstructExprClass:
    return false;

  case CXXTemporaryObjectExprClass:
  case CXXConstructExprClass: {
    if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
      if (Type->hasAttr<WarnUnusedAttr>()) {
        WarnE = this;
        Loc = getBeginLoc();
        R1 = getSourceRange();
        return true;
      }
    }
    return false;
  }

  case ObjCMessageExprClass: {
    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
    if (Ctx.getLangOpts().ObjCAutoRefCount &&
        ME->isInstanceMessage() &&
        !ME->getType()->isVoidType() &&
        ME->getMethodFamily() == OMF_init) {
      WarnE = this;
      Loc = getExprLoc();
      R1 = ME->getSourceRange();
      return true;
    }

    if (const ObjCMethodDecl *MD = ME->getMethodDecl())
      if (MD->hasAttr<WarnUnusedResultAttr>()) {
        WarnE = this;
        Loc = getExprLoc();
        return true;
      }

    return false;
  }

  case ObjCPropertyRefExprClass:
    WarnE = this;
    Loc = getExprLoc();
    R1 = getSourceRange();
    return true;

  case PseudoObjectExprClass: {
    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);

    // Only complain about things that have the form of a getter.
    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
        isa<BinaryOperator>(PO->getSyntacticForm()))
      return false;

    WarnE = this;
    Loc = getExprLoc();
    R1 = getSourceRange();
    return true;
  }

  case StmtExprClass: {
    // Statement exprs don't logically have side effects themselves, but are
    // sometimes used in macros in ways that give them a type that is unused.
    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
    // however, if the result of the stmt expr is dead, we don't want to emit a
    // warning.
    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
    if (!CS->body_empty()) {
      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
    }

    if (getType()->isVoidType())
      return false;
    WarnE = this;
    Loc = cast<StmtExpr>(this)->getLParenLoc();
    R1 = getSourceRange();
    return true;
  }
  case CXXFunctionalCastExprClass:
  case CStyleCastExprClass: {
    // Ignore an explicit cast to void unless the operand is a non-trivial
    // volatile lvalue.
    const CastExpr *CE = cast<CastExpr>(this);
    if (CE->getCastKind() == CK_ToVoid) {
      if (CE->getSubExpr()->isGLValue() &&
          CE->getSubExpr()->getType().isVolatileQualified()) {
        const DeclRefExpr *DRE =
            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
              cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
            !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
                                                          R1, R2, Ctx);
        }
      }
      return false;
    }

    // If this is a cast to a constructor conversion, check the operand.
    // Otherwise, the result of the cast is unused.
    if (CE->getCastKind() == CK_ConstructorConversion)
      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);

    WarnE = this;
    if (const CXXFunctionalCastExpr *CXXCE =
            dyn_cast<CXXFunctionalCastExpr>(this)) {
      Loc = CXXCE->getBeginLoc();
      R1 = CXXCE->getSubExpr()->getSourceRange();
    } else {
      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
      Loc = CStyleCE->getLParenLoc();
      R1 = CStyleCE->getSubExpr()->getSourceRange();
    }
    return true;
  }
  case ImplicitCastExprClass: {
    const CastExpr *ICE = cast<ImplicitCastExpr>(this);

    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
    if (ICE->getCastKind() == CK_LValueToRValue &&
        ICE->getSubExpr()->getType().isVolatileQualified())
      return false;

    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  }
  case CXXDefaultArgExprClass:
    return (cast<CXXDefaultArgExpr>(this)
            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  case CXXDefaultInitExprClass:
    return (cast<CXXDefaultInitExpr>(this)
            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));

  case CXXNewExprClass:
    // FIXME: In theory, there might be new expressions that don't have side
    // effects (e.g. a placement new with an uninitialized POD).
  case CXXDeleteExprClass:
    return false;
  case MaterializeTemporaryExprClass:
    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case CXXBindTemporaryExprClass:
    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  case ExprWithCleanupsClass:
    return cast<ExprWithCleanups>(this)->getSubExpr()
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  }
}

/// isOBJCGCCandidate - Check if an expression is objc gc'able.
/// returns true, if it is; false otherwise.
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
  const Expr *E = IgnoreParens();
  switch (E->getStmtClass()) {
  default:
    return false;
  case ObjCIvarRefExprClass:
    return true;
  case Expr::UnaryOperatorClass:
    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case ImplicitCastExprClass:
    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case MaterializeTemporaryExprClass:
    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
                                                      ->isOBJCGCCandidate(Ctx);
  case CStyleCastExprClass:
    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case DeclRefExprClass: {
    const Decl *D = cast<DeclRefExpr>(E)->getDecl();

    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
      if (VD->hasGlobalStorage())
        return true;
      QualType T = VD->getType();
      // dereferencing to a  pointer is always a gc'able candidate,
      // unless it is __weak.
      return T->isPointerType() &&
             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
    }
    return false;
  }
  case MemberExprClass: {
    const MemberExpr *M = cast<MemberExpr>(E);
    return M->getBase()->isOBJCGCCandidate(Ctx);
  }
  case ArraySubscriptExprClass:
    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
  }
}

bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
  if (isTypeDependent())
    return false;
  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
}

QualType Expr::findBoundMemberType(const Expr *expr) {
  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));

  // Bound member expressions are always one of these possibilities:
  //   x->m      x.m      x->*y      x.*y
  // (possibly parenthesized)

  expr = expr->IgnoreParens();
  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
    return mem->getMemberDecl()->getType();
  }

  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
                      ->getPointeeType();
    assert(type->isFunctionType());
    return type;
  }

  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
  return QualType();
}

Expr* Expr::IgnoreParens() {
  Expr* E = this;
  while (true) {
    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
      E = P->getSubExpr();
      continue;
    }
    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
      if (P->getOpcode() == UO_Extension) {
        E = P->getSubExpr();
        continue;
      }
    }
    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
      if (!P->isResultDependent()) {
        E = P->getResultExpr();
        continue;
      }
    }
    if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
      if (!P->isConditionDependent()) {
        E = P->getChosenSubExpr();
        continue;
      }
    }
    return E;
  }
}

/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
/// or CastExprs or ImplicitCastExprs, returning their operand.
Expr *Expr::IgnoreParenCasts() {
  Expr *E = this;
  while (true) {
    E = E->IgnoreParens();
    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
      E = P->getSubExpr();
      continue;
    }
    if (MaterializeTemporaryExpr *Materialize
                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = Materialize->GetTemporaryExpr();
      continue;
    }
    if (SubstNonTypeTemplateParmExpr *NTTP
                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
      E = NTTP->getReplacement();
      continue;
    }
    if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
      E = FE->getSubExpr();
      continue;
    }
    return E;
  }
}

Expr *Expr::IgnoreCasts() {
  Expr *E = this;
  while (true) {
    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
      E = P->getSubExpr();
      continue;
    }
    if (MaterializeTemporaryExpr *Materialize
        = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = Materialize->GetTemporaryExpr();
      continue;
    }
    if (SubstNonTypeTemplateParmExpr *NTTP
        = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
      E = NTTP->getReplacement();
      continue;
    }
    if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
      E = FE->getSubExpr();
      continue;
    }
    return E;
  }
}

/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
/// casts.  This is intended purely as a temporary workaround for code
/// that hasn't yet been rewritten to do the right thing about those
/// casts, and may disappear along with the last internal use.
Expr *Expr::IgnoreParenLValueCasts() {
  Expr *E = this;
  while (true) {
    E = E->IgnoreParens();
    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
      if (P->getCastKind() == CK_LValueToRValue) {
        E = P->getSubExpr();
        continue;
      }
    } else if (MaterializeTemporaryExpr *Materialize
                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = Materialize->GetTemporaryExpr();
      continue;
    } else if (SubstNonTypeTemplateParmExpr *NTTP
                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
      E = NTTP->getReplacement();
      continue;
    } else if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
      E = FE->getSubExpr();
      continue;
    }
    break;
  }
  return E;
}

Expr *Expr::ignoreParenBaseCasts() {
  Expr *E = this;
  while (true) {
    E = E->IgnoreParens();
    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
      if (CE->getCastKind() == CK_DerivedToBase ||
          CE->getCastKind() == CK_UncheckedDerivedToBase ||
          CE->getCastKind() == CK_NoOp) {
        E = CE->getSubExpr();
        continue;
      }
    }

    return E;
  }
}

Expr *Expr::IgnoreParenImpCasts() {
  Expr *E = this;
  while (true) {
    E = E->IgnoreParens();
    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
      E = P->getSubExpr();
      continue;
    }
    if (MaterializeTemporaryExpr *Materialize
                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = Materialize->GetTemporaryExpr();
      continue;
    }
    if (SubstNonTypeTemplateParmExpr *NTTP
                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
      E = NTTP->getReplacement();
      continue;
    }
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) {
      E = CE->getSubExpr();
      continue;
    }
    return E;
  }
}

Expr *Expr::IgnoreConversionOperator() {
  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
      return MCE->getImplicitObjectArgument();
  }
  return this;
}

/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
/// value (including ptr->int casts of the same size).  Strip off any
/// ParenExpr or CastExprs, returning their operand.
Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
  Expr *E = this;
  while (true) {
    E = E->IgnoreParens();

    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
      // ptr<->int casts of the same width.  We also ignore all identity casts.
      Expr *SE = P->getSubExpr();

      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
        E = SE;
        continue;
      }

      if ((E->getType()->isPointerType() ||
           E->getType()->isIntegralType(Ctx)) &&
          (SE->getType()->isPointerType() ||
           SE->getType()->isIntegralType(Ctx)) &&
          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
        E = SE;
        continue;
      }
    }

    if (SubstNonTypeTemplateParmExpr *NTTP
                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
      E = NTTP->getReplacement();
      continue;
    }

    return E;
  }
}

bool Expr::isDefaultArgument() const {
  const Expr *E = this;
  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
    E = M->GetTemporaryExpr();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
    E = ICE->getSubExprAsWritten();

  return isa<CXXDefaultArgExpr>(E);
}

/// Skip over any no-op casts and any temporary-binding
/// expressions.
static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
    E = M->GetTemporaryExpr();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getCastKind() == CK_NoOp)
      E = ICE->getSubExpr();
    else
      break;
  }

  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
    E = BE->getSubExpr();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getCastKind() == CK_NoOp)
      E = ICE->getSubExpr();
    else
      break;
  }

  return E->IgnoreParens();
}

/// isTemporaryObject - Determines if this expression produces a
/// temporary of the given class type.
bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
    return false;

  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);

  // Temporaries are by definition pr-values of class type.
  if (!E->Classify(C).isPRValue()) {
    // In this context, property reference is a message call and is pr-value.
    if (!isa<ObjCPropertyRefExpr>(E))
      return false;
  }

  // Black-list a few cases which yield pr-values of class type that don't
  // refer to temporaries of that type:

  // - implicit derived-to-base conversions
  if (isa<ImplicitCastExpr>(E)) {
    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase:
      return false;
    default:
      break;
    }
  }

  // - member expressions (all)
  if (isa<MemberExpr>(E))
    return false;

  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
    if (BO->isPtrMemOp())
      return false;

  // - opaque values (all)
  if (isa<OpaqueValueExpr>(E))
    return false;

  return true;
}

bool Expr::isImplicitCXXThis() const {
  const Expr *E = this;

  // Strip away parentheses and casts we don't care about.
  while (true) {
    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
      E = Paren->getSubExpr();
      continue;
    }

    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
      if (ICE->getCastKind() == CK_NoOp ||
          ICE->getCastKind() == CK_LValueToRValue ||
          ICE->getCastKind() == CK_DerivedToBase ||
          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
        E = ICE->getSubExpr();
        continue;
      }
    }

    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
      if (UnOp->getOpcode() == UO_Extension) {
        E = UnOp->getSubExpr();
        continue;
      }
    }

    if (const MaterializeTemporaryExpr *M
                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
      E = M->GetTemporaryExpr();
      continue;
    }

    break;
  }

  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
    return This->isImplicit();

  return false;
}

/// hasAnyTypeDependentArguments - Determines if any of the expressions
/// in Exprs is type-dependent.
bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
  for (unsigned I = 0; I < Exprs.size(); ++I)
    if (Exprs[I]->isTypeDependent())
      return true;

  return false;
}

bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
                                 const Expr **Culprit) const {
  // This function is attempting whether an expression is an initializer
  // which can be evaluated at compile-time. It very closely parallels
  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
  // will lead to unexpected results.  Like ConstExprEmitter, it falls back
  // to isEvaluatable most of the time.
  //
  // If we ever capture reference-binding directly in the AST, we can
  // kill the second parameter.

  if (IsForRef) {
    EvalResult Result;
    if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
      return true;
    if (Culprit)
      *Culprit = this;
    return false;
  }

  switch (getStmtClass()) {
  default: break;
  case StringLiteralClass:
  case ObjCEncodeExprClass:
    return true;
  case CXXTemporaryObjectExprClass:
  case CXXConstructExprClass: {
    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);

    if (CE->getConstructor()->isTrivial() &&
        CE->getConstructor()->getParent()->hasTrivialDestructor()) {
      // Trivial default constructor
      if (!CE->getNumArgs()) return true;

      // Trivial copy constructor
      assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
      return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
    }

    break;
  }
  case ConstantExprClass: {
    // FIXME: We should be able to return "true" here, but it can lead to extra
    // error messages. E.g. in Sema/array-init.c.
    const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
    return Exp->isConstantInitializer(Ctx, false, Culprit);
  }
  case CompoundLiteralExprClass: {
    // This handles gcc's extension that allows global initializers like
    // "struct x {int x;} x = (struct x) {};".
    // FIXME: This accepts other cases it shouldn't!
    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
    return Exp->isConstantInitializer(Ctx, false, Culprit);
  }
  case DesignatedInitUpdateExprClass: {
    const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
    return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
           DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
  }
  case InitListExprClass: {
    const InitListExpr *ILE = cast<InitListExpr>(this);
    if (ILE->getType()->isArrayType()) {
      unsigned numInits = ILE->getNumInits();
      for (unsigned i = 0; i < numInits; i++) {
        if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
          return false;
      }
      return true;
    }

    if (ILE->getType()->isRecordType()) {
      unsigned ElementNo = 0;
      RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
      for (const auto *Field : RD->fields()) {
        // If this is a union, skip all the fields that aren't being initialized.
        if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
          continue;

        // Don't emit anonymous bitfields, they just affect layout.
        if (Field->isUnnamedBitfield())
          continue;

        if (ElementNo < ILE->getNumInits()) {
          const Expr *Elt = ILE->getInit(ElementNo++);
          if (Field->isBitField()) {
            // Bitfields have to evaluate to an integer.
            EvalResult Result;
            if (!Elt->EvaluateAsInt(Result, Ctx)) {
              if (Culprit)
                *Culprit = Elt;
              return false;
            }
          } else {
            bool RefType = Field->getType()->isReferenceType();
            if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
              return false;
          }
        }
      }
      return true;
    }

    break;
  }
  case ImplicitValueInitExprClass:
  case NoInitExprClass:
    return true;
  case ParenExprClass:
    return cast<ParenExpr>(this)->getSubExpr()
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
  case GenericSelectionExprClass:
    return cast<GenericSelectionExpr>(this)->getResultExpr()
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
  case ChooseExprClass:
    if (cast<ChooseExpr>(this)->isConditionDependent()) {
      if (Culprit)
        *Culprit = this;
      return false;
    }
    return cast<ChooseExpr>(this)->getChosenSubExpr()
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
  case UnaryOperatorClass: {
    const UnaryOperator* Exp = cast<UnaryOperator>(this);
    if (Exp->getOpcode() == UO_Extension)
      return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
    break;
  }
  case CXXFunctionalCastExprClass:
  case CXXStaticCastExprClass:
  case ImplicitCastExprClass:
  case CStyleCastExprClass:
  case ObjCBridgedCastExprClass:
  case CXXDynamicCastExprClass:
  case CXXReinterpretCastExprClass:
  case CXXConstCastExprClass: {
    const CastExpr *CE = cast<CastExpr>(this);

    // Handle misc casts we want to ignore.
    if (CE->getCastKind() == CK_NoOp ||
        CE->getCastKind() == CK_LValueToRValue ||
        CE->getCastKind() == CK_ToUnion ||
        CE->getCastKind() == CK_ConstructorConversion ||
        CE->getCastKind() == CK_NonAtomicToAtomic ||
        CE->getCastKind() == CK_AtomicToNonAtomic ||
        CE->getCastKind() == CK_IntToOCLSampler)
      return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);

    break;
  }
  case MaterializeTemporaryExprClass:
    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
      ->isConstantInitializer(Ctx, false, Culprit);

  case SubstNonTypeTemplateParmExprClass:
    return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
      ->isConstantInitializer(Ctx, false, Culprit);
  case CXXDefaultArgExprClass:
    return cast<CXXDefaultArgExpr>(this)->getExpr()
      ->isConstantInitializer(Ctx, false, Culprit);
  case CXXDefaultInitExprClass:
    return cast<CXXDefaultInitExpr>(this)->getExpr()
      ->isConstantInitializer(Ctx, false, Culprit);
  }
  // Allow certain forms of UB in constant initializers: signed integer
  // overflow and floating-point division by zero. We'll give a warning on
  // these, but they're common enough that we have to accept them.
  if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
    return true;
  if (Culprit)
    *Culprit = this;
  return false;
}

bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
  const FunctionDecl* FD = getDirectCallee();
  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
              FD->getBuiltinID() != Builtin::BI__builtin_assume))
    return false;

  const Expr* Arg = getArg(0);
  bool ArgVal;
  return !Arg->isValueDependent() &&
         Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
}

namespace {
  /// Look for any side effects within a Stmt.
  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
    typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
    const bool IncludePossibleEffects;
    bool HasSideEffects;

  public:
    explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
      : Inherited(Context),
        IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }

    bool hasSideEffects() const { return HasSideEffects; }

    void VisitExpr(const Expr *E) {
      if (!HasSideEffects &&
          E->HasSideEffects(Context, IncludePossibleEffects))
        HasSideEffects = true;
    }
  };
}

bool Expr::HasSideEffects(const ASTContext &Ctx,
                          bool IncludePossibleEffects) const {
  // In circumstances where we care about definite side effects instead of
  // potential side effects, we want to ignore expressions that are part of a
  // macro expansion as a potential side effect.
  if (!IncludePossibleEffects && getExprLoc().isMacroID())
    return false;

  if (isInstantiationDependent())
    return IncludePossibleEffects;

  switch (getStmtClass()) {
  case NoStmtClass:
  #define ABSTRACT_STMT(Type)
  #define STMT(Type, Base) case Type##Class:
  #define EXPR(Type, Base)
  #include "clang/AST/StmtNodes.inc"
    llvm_unreachable("unexpected Expr kind");

  case DependentScopeDeclRefExprClass:
  case CXXUnresolvedConstructExprClass:
  case CXXDependentScopeMemberExprClass:
  case UnresolvedLookupExprClass:
  case UnresolvedMemberExprClass:
  case PackExpansionExprClass:
  case SubstNonTypeTemplateParmPackExprClass:
  case FunctionParmPackExprClass:
  case TypoExprClass:
  case CXXFoldExprClass:
    llvm_unreachable("shouldn't see dependent / unresolved nodes here");

  case DeclRefExprClass:
  case ObjCIvarRefExprClass:
  case PredefinedExprClass:
  case IntegerLiteralClass:
  case FixedPointLiteralClass:
  case FloatingLiteralClass:
  case ImaginaryLiteralClass:
  case StringLiteralClass:
  case CharacterLiteralClass:
  case OffsetOfExprClass:
  case ImplicitValueInitExprClass:
  case UnaryExprOrTypeTraitExprClass:
  case AddrLabelExprClass:
  case GNUNullExprClass:
  case ArrayInitIndexExprClass:
  case NoInitExprClass:
  case CXXBoolLiteralExprClass:
  case CXXNullPtrLiteralExprClass:
  case CXXThisExprClass:
  case CXXScalarValueInitExprClass:
  case TypeTraitExprClass:
  case ArrayTypeTraitExprClass:
  case ExpressionTraitExprClass:
  case CXXNoexceptExprClass:
  case SizeOfPackExprClass:
  case ObjCStringLiteralClass:
  case ObjCEncodeExprClass:
  case ObjCBoolLiteralExprClass:
  case ObjCAvailabilityCheckExprClass:
  case CXXUuidofExprClass:
  case OpaqueValueExprClass:
    // These never have a side-effect.
    return false;

  case ConstantExprClass:
    // FIXME: Move this into the "return false;" block above.
    return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
        Ctx, IncludePossibleEffects);

  case CallExprClass:
  case CXXOperatorCallExprClass:
  case CXXMemberCallExprClass:
  case CUDAKernelCallExprClass:
  case UserDefinedLiteralClass: {
    // We don't know a call definitely has side effects, except for calls
    // to pure/const functions that definitely don't.
    // If the call itself is considered side-effect free, check the operands.
    const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
    bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
    if (IsPure || !IncludePossibleEffects)
      break;
    return true;
  }

  case BlockExprClass:
  case CXXBindTemporaryExprClass:
    if (!IncludePossibleEffects)
      break;
    return true;

  case MSPropertyRefExprClass:
  case MSPropertySubscriptExprClass:
  case CompoundAssignOperatorClass:
  case VAArgExprClass:
  case AtomicExprClass:
  case CXXThrowExprClass:
  case CXXNewExprClass:
  case CXXDeleteExprClass:
  case CoawaitExprClass:
  case DependentCoawaitExprClass:
  case CoyieldExprClass:
    // These always have a side-effect.
    return true;

  case StmtExprClass: {
    // StmtExprs have a side-effect if any substatement does.
    SideEffectFinder Finder(Ctx, IncludePossibleEffects);
    Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
    return Finder.hasSideEffects();
  }

  case ExprWithCleanupsClass:
    if (IncludePossibleEffects)
      if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
        return true;
    break;

  case ParenExprClass:
  case ArraySubscriptExprClass:
  case OMPArraySectionExprClass:
  case MemberExprClass:
  case ConditionalOperatorClass:
  case BinaryConditionalOperatorClass:
  case CompoundLiteralExprClass:
  case ExtVectorElementExprClass:
  case DesignatedInitExprClass:
  case DesignatedInitUpdateExprClass:
  case ArrayInitLoopExprClass:
  case ParenListExprClass:
  case CXXPseudoDestructorExprClass:
  case CXXStdInitializerListExprClass:
  case SubstNonTypeTemplateParmExprClass:
  case MaterializeTemporaryExprClass:
  case ShuffleVectorExprClass:
  case ConvertVectorExprClass:
  case AsTypeExprClass:
    // These have a side-effect if any subexpression does.
    break;

  case UnaryOperatorClass:
    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
      return true;
    break;

  case BinaryOperatorClass:
    if (cast<BinaryOperator>(this)->isAssignmentOp())
      return true;
    break;

  case InitListExprClass:
    // FIXME: The children for an InitListExpr doesn't include the array filler.
    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
      if (E->HasSideEffects(Ctx, IncludePossibleEffects))
        return true;
    break;

  case GenericSelectionExprClass:
    return cast<GenericSelectionExpr>(this)->getResultExpr()->
        HasSideEffects(Ctx, IncludePossibleEffects);

  case ChooseExprClass:
    return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
        Ctx, IncludePossibleEffects);

  case CXXDefaultArgExprClass:
    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
        Ctx, IncludePossibleEffects);

  case CXXDefaultInitExprClass: {
    const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
    if (const Expr *E = FD->getInClassInitializer())
      return E->HasSideEffects(Ctx, IncludePossibleEffects);
    // If we've not yet parsed the initializer, assume it has side-effects.
    return true;
  }

  case CXXDynamicCastExprClass: {
    // A dynamic_cast expression has side-effects if it can throw.
    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
    if (DCE->getTypeAsWritten()->isReferenceType() &&
        DCE->getCastKind() == CK_Dynamic)
      return true;
    }
    LLVM_FALLTHROUGH;
  case ImplicitCastExprClass:
  case CStyleCastExprClass:
  case CXXStaticCastExprClass:
  case CXXReinterpretCastExprClass:
  case CXXConstCastExprClass:
  case CXXFunctionalCastExprClass: {
    // While volatile reads are side-effecting in both C and C++, we treat them
    // as having possible (not definite) side-effects. This allows idiomatic
    // code to behave without warning, such as sizeof(*v) for a volatile-
    // qualified pointer.
    if (!IncludePossibleEffects)
      break;

    const CastExpr *CE = cast<CastExpr>(this);
    if (CE->getCastKind() == CK_LValueToRValue &&
        CE->getSubExpr()->getType().isVolatileQualified())
      return true;
    break;
  }

  case CXXTypeidExprClass:
    // typeid might throw if its subexpression is potentially-evaluated, so has
    // side-effects in that case whether or not its subexpression does.
    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();

  case CXXConstructExprClass:
  case CXXTemporaryObjectExprClass: {
    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
    if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
      return true;
    // A trivial constructor does not add any side-effects of its own. Just look
    // at its arguments.
    break;
  }

  case CXXInheritedCtorInitExprClass: {
    const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
    if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
      return true;
    break;
  }

  case LambdaExprClass: {
    const LambdaExpr *LE = cast<LambdaExpr>(this);
    for (Expr *E : LE->capture_inits())
      if (E->HasSideEffects(Ctx, IncludePossibleEffects))
        return true;
    return false;
  }

  case PseudoObjectExprClass: {
    // Only look for side-effects in the semantic form, and look past
    // OpaqueValueExpr bindings in that form.
    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
                                                    E = PO->semantics_end();
         I != E; ++I) {
      const Expr *Subexpr = *I;
      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
        Subexpr = OVE->getSourceExpr();
      if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
        return true;
    }
    return false;
  }

  case ObjCBoxedExprClass:
  case ObjCArrayLiteralClass:
  case ObjCDictionaryLiteralClass:
  case ObjCSelectorExprClass:
  case ObjCProtocolExprClass:
  case ObjCIsaExprClass:
  case ObjCIndirectCopyRestoreExprClass:
  case ObjCSubscriptRefExprClass:
  case ObjCBridgedCastExprClass:
  case ObjCMessageExprClass:
  case ObjCPropertyRefExprClass:
  // FIXME: Classify these cases better.
    if (IncludePossibleEffects)
      return true;
    break;
  }

  // Recurse to children.
  for (const Stmt *SubStmt : children())
    if (SubStmt &&
        cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
      return true;

  return false;
}

namespace {
  /// Look for a call to a non-trivial function within an expression.
  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
  {
    typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;

    bool NonTrivial;

  public:
    explicit NonTrivialCallFinder(const ASTContext &Context)
      : Inherited(Context), NonTrivial(false) { }

    bool hasNonTrivialCall() const { return NonTrivial; }

    void VisitCallExpr(const CallExpr *E) {
      if (const CXXMethodDecl *Method
          = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
        if (Method->isTrivial()) {
          // Recurse to children of the call.
          Inherited::VisitStmt(E);
          return;
        }
      }

      NonTrivial = true;
    }

    void VisitCXXConstructExpr(const CXXConstructExpr *E) {
      if (E->getConstructor()->isTrivial()) {
        // Recurse to children of the call.
        Inherited::VisitStmt(E);
        return;
      }

      NonTrivial = true;
    }

    void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
      if (E->getTemporary()->getDestructor()->isTrivial()) {
        Inherited::VisitStmt(E);
        return;
      }

      NonTrivial = true;
    }
  };
}

bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
  NonTrivialCallFinder Finder(Ctx);
  Finder.Visit(this);
  return Finder.hasNonTrivialCall();
}

/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
/// pointer constant or not, as well as the specific kind of constant detected.
/// Null pointer constants can be integer constant expressions with the
/// value zero, casts of zero to void*, nullptr (C++0X), or __null
/// (a GNU extension).
Expr::NullPointerConstantKind
Expr::isNullPointerConstant(ASTContext &Ctx,
                            NullPointerConstantValueDependence NPC) const {
  if (isValueDependent() &&
      (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
    switch (NPC) {
    case NPC_NeverValueDependent:
      llvm_unreachable("Unexpected value dependent expression!");
    case NPC_ValueDependentIsNull:
      if (isTypeDependent() || getType()->isIntegralType(Ctx))
        return NPCK_ZeroExpression;
      else
        return NPCK_NotNull;

    case NPC_ValueDependentIsNotNull:
      return NPCK_NotNull;
    }
  }

  // Strip off a cast to void*, if it exists. Except in C++.
  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
    if (!Ctx.getLangOpts().CPlusPlus) {
      // Check that it is a cast to void*.
      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
        QualType Pointee = PT->getPointeeType();
        // Only (void*)0 or equivalent are treated as nullptr. If pointee type
        // has non-default address space it is not treated as nullptr.
        // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
        // since it cannot be assigned to a pointer to constant address space.
        bool PointeeHasDefaultAS =
            Pointee.getAddressSpace() == LangAS::Default ||
            (Ctx.getLangOpts().OpenCLVersion >= 200 &&
             Pointee.getAddressSpace() == LangAS::opencl_generic) ||
            (Ctx.getLangOpts().OpenCL &&
             Ctx.getLangOpts().OpenCLVersion < 200 &&
             Pointee.getAddressSpace() == LangAS::opencl_private);

        if (PointeeHasDefaultAS && Pointee->isVoidType() && // to void*
            CE->getSubExpr()->getType()->isIntegerType())   // from int.
          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
      }
    }
  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
    // Ignore the ImplicitCastExpr type entirely.
    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
    // Accept ((void*)0) as a null pointer constant, as many other
    // implementations do.
    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const GenericSelectionExpr *GE =
               dyn_cast<GenericSelectionExpr>(this)) {
    if (GE->isResultDependent())
      return NPCK_NotNull;
    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
    if (CE->isConditionDependent())
      return NPCK_NotNull;
    return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const CXXDefaultArgExpr *DefaultArg
               = dyn_cast<CXXDefaultArgExpr>(this)) {
    // See through default argument expressions.
    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const CXXDefaultInitExpr *DefaultInit
               = dyn_cast<CXXDefaultInitExpr>(this)) {
    // See through default initializer expressions.
    return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (isa<GNUNullExpr>(this)) {
    // The GNU __null extension is always a null pointer constant.
    return NPCK_GNUNull;
  } else if (const MaterializeTemporaryExpr *M
                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
    if (const Expr *Source = OVE->getSourceExpr())
      return Source->isNullPointerConstant(Ctx, NPC);
  }

  // C++11 nullptr_t is always a null pointer constant.
  if (getType()->isNullPtrType())
    return NPCK_CXX11_nullptr;

  if (const RecordType *UT = getType()->getAsUnionType())
    if (!Ctx.getLangOpts().CPlusPlus11 &&
        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
        const Expr *InitExpr = CLE->getInitializer();
        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
      }
  // This expression must be an integer type.
  if (!getType()->isIntegerType() ||
      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
    return NPCK_NotNull;

  if (Ctx.getLangOpts().CPlusPlus11) {
    // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
    // value zero or a prvalue of type std::nullptr_t.
    // Microsoft mode permits C++98 rules reflecting MSVC behavior.
    const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
    if (Lit && !Lit->getValue())
      return NPCK_ZeroLiteral;
    else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
      return NPCK_NotNull;
  } else {
    // If we have an integer constant expression, we need to *evaluate* it and
    // test for the value 0.
    if (!isIntegerConstantExpr(Ctx))
      return NPCK_NotNull;
  }

  if (EvaluateKnownConstInt(Ctx) != 0)
    return NPCK_NotNull;

  if (isa<IntegerLiteral>(this))
    return NPCK_ZeroLiteral;
  return NPCK_ZeroExpression;
}

/// If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
  const Expr *E = this;
  while (true) {
    assert((E->getValueKind() == VK_LValue &&
            E->getObjectKind() == OK_ObjCProperty) &&
           "expression is not a property reference");
    E = E->IgnoreParenCasts();
    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
      if (BO->getOpcode() == BO_Comma) {
        E = BO->getRHS();
        continue;
      }
    }

    break;
  }

  return cast<ObjCPropertyRefExpr>(E);
}

bool Expr::isObjCSelfExpr() const {
  const Expr *E = IgnoreParenImpCasts();

  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  if (!DRE)
    return false;

  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
  if (!Param)
    return false;

  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
  if (!M)
    return false;

  return M->getSelfDecl() == Param;
}

FieldDecl *Expr::getSourceBitField() {
  Expr *E = this->IgnoreParens();

  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getCastKind() == CK_LValueToRValue ||
        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
      E = ICE->getSubExpr()->IgnoreParens();
    else
      break;
  }

  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
      if (Field->isBitField())
        return Field;

  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
    FieldDecl *Ivar = IvarRef->getDecl();
    if (Ivar->isBitField())
      return Ivar;
  }

  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
      if (Field->isBitField())
        return Field;

    if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
      if (Expr *E = BD->getBinding())
        return E->getSourceBitField();
  }

  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
    if (BinOp->isAssignmentOp() && BinOp->getLHS())
      return BinOp->getLHS()->getSourceBitField();

    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
      return BinOp->getRHS()->getSourceBitField();
  }

  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
    if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
      return UnOp->getSubExpr()->getSourceBitField();

  return nullptr;
}

bool Expr::refersToVectorElement() const {
  // FIXME: Why do we not just look at the ObjectKind here?
  const Expr *E = this->IgnoreParens();

  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getValueKind() != VK_RValue &&
        ICE->getCastKind() == CK_NoOp)
      E = ICE->getSubExpr()->IgnoreParens();
    else
      break;
  }

  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
    return ASE->getBase()->getType()->isVectorType();

  if (isa<ExtVectorElementExpr>(E))
    return true;

  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
    if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
      if (auto *E = BD->getBinding())
        return E->refersToVectorElement();

  return false;
}

bool Expr::refersToGlobalRegisterVar() const {
  const Expr *E = this->IgnoreParenImpCasts();

  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
      if (VD->getStorageClass() == SC_Register &&
          VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
        return true;

  return false;
}

/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool ExtVectorElementExpr::isArrow() const {
  return getBase()->getType()->isPointerType();
}

unsigned ExtVectorElementExpr::getNumElements() const {
  if (const VectorType *VT = getType()->getAs<VectorType>())
    return VT->getNumElements();
  return 1;
}

/// containsDuplicateElements - Return true if any element access is repeated.
bool ExtVectorElementExpr::containsDuplicateElements() const {
  // FIXME: Refactor this code to an accessor on the AST node which returns the
  // "type" of component access, and share with code below and in Sema.
  StringRef Comp = Accessor->getName();

  // Halving swizzles do not contain duplicate elements.
  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
    return false;

  // Advance past s-char prefix on hex swizzles.
  if (Comp[0] == 's' || Comp[0] == 'S')
    Comp = Comp.substr(1);

  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
        return true;

  return false;
}

/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
void ExtVectorElementExpr::getEncodedElementAccess(
    SmallVectorImpl<uint32_t> &Elts) const {
  StringRef Comp = Accessor->getName();
  bool isNumericAccessor = false;
  if (Comp[0] == 's' || Comp[0] == 'S') {
    Comp = Comp.substr(1);
    isNumericAccessor = true;
  }

  bool isHi =   Comp == "hi";
  bool isLo =   Comp == "lo";
  bool isEven = Comp == "even";
  bool isOdd  = Comp == "odd";

  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
    uint64_t Index;

    if (isHi)
      Index = e + i;
    else if (isLo)
      Index = i;
    else if (isEven)
      Index = 2 * i;
    else if (isOdd)
      Index = 2 * i + 1;
    else
      Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);

    Elts.push_back(Index);
  }
}

ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
                                     QualType Type, SourceLocation BLoc,
                                     SourceLocation RP)
   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
          Type->isDependentType(), Type->isDependentType(),
          Type->isInstantiationDependentType(),
          Type->containsUnexpandedParameterPack()),
     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
{
  SubExprs = new (C) Stmt*[args.size()];
  for (unsigned i = 0; i != args.size(); i++) {
    if (args[i]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (args[i]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (args[i]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (args[i]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    SubExprs[i] = args[i];
  }
}

void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
  if (SubExprs) C.Deallocate(SubExprs);

  this->NumExprs = Exprs.size();
  SubExprs = new (C) Stmt*[NumExprs];
  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
}

GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
                               SourceLocation GenericLoc, Expr *ControllingExpr,
                               ArrayRef<TypeSourceInfo*> AssocTypes,
                               ArrayRef<Expr*> AssocExprs,
                               SourceLocation DefaultLoc,
                               SourceLocation RParenLoc,
                               bool ContainsUnexpandedParameterPack,
                               unsigned ResultIndex)
  : Expr(GenericSelectionExprClass,
         AssocExprs[ResultIndex]->getType(),
         AssocExprs[ResultIndex]->getValueKind(),
         AssocExprs[ResultIndex]->getObjectKind(),
         AssocExprs[ResultIndex]->isTypeDependent(),
         AssocExprs[ResultIndex]->isValueDependent(),
         AssocExprs[ResultIndex]->isInstantiationDependent(),
         ContainsUnexpandedParameterPack),
    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
    NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
    GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  SubExprs[CONTROLLING] = ControllingExpr;
  assert(AssocTypes.size() == AssocExprs.size());
  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
}

GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
                               SourceLocation GenericLoc, Expr *ControllingExpr,
                               ArrayRef<TypeSourceInfo*> AssocTypes,
                               ArrayRef<Expr*> AssocExprs,
                               SourceLocation DefaultLoc,
                               SourceLocation RParenLoc,
                               bool ContainsUnexpandedParameterPack)
  : Expr(GenericSelectionExprClass,
         Context.DependentTy,
         VK_RValue,
         OK_Ordinary,
         /*isTypeDependent=*/true,
         /*isValueDependent=*/true,
         /*isInstantiationDependent=*/true,
         ContainsUnexpandedParameterPack),
    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
    NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
    DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  SubExprs[CONTROLLING] = ControllingExpr;
  assert(AssocTypes.size() == AssocExprs.size());
  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
}

//===----------------------------------------------------------------------===//
//  DesignatedInitExpr
//===----------------------------------------------------------------------===//

IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
  assert(Kind == FieldDesignator && "Only valid on a field designator");
  if (Field.NameOrField & 0x01)
    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
  else
    return getField()->getIdentifier();
}

DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
                                       llvm::ArrayRef<Designator> Designators,
                                       SourceLocation EqualOrColonLoc,
                                       bool GNUSyntax,
                                       ArrayRef<Expr*> IndexExprs,
                                       Expr *Init)
  : Expr(DesignatedInitExprClass, Ty,
         Init->getValueKind(), Init->getObjectKind(),
         Init->isTypeDependent(), Init->isValueDependent(),
         Init->isInstantiationDependent(),
         Init->containsUnexpandedParameterPack()),
    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
    NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
  this->Designators = new (C) Designator[NumDesignators];

  // Record the initializer itself.
  child_iterator Child = child_begin();
  *Child++ = Init;

  // Copy the designators and their subexpressions, computing
  // value-dependence along the way.
  unsigned IndexIdx = 0;
  for (unsigned I = 0; I != NumDesignators; ++I) {
    this->Designators[I] = Designators[I];

    if (this->Designators[I].isArrayDesignator()) {
      // Compute type- and value-dependence.
      Expr *Index = IndexExprs[IndexIdx];
      if (Index->isTypeDependent() || Index->isValueDependent())
        ExprBits.TypeDependent = ExprBits.ValueDependent = true;
      if (Index->isInstantiationDependent())
        ExprBits.InstantiationDependent = true;
      // Propagate unexpanded parameter packs.
      if (Index->containsUnexpandedParameterPack())
        ExprBits.ContainsUnexpandedParameterPack = true;

      // Copy the index expressions into permanent storage.
      *Child++ = IndexExprs[IndexIdx++];
    } else if (this->Designators[I].isArrayRangeDesignator()) {
      // Compute type- and value-dependence.
      Expr *Start = IndexExprs[IndexIdx];
      Expr *End = IndexExprs[IndexIdx + 1];
      if (Start->isTypeDependent() || Start->isValueDependent() ||
          End->isTypeDependent() || End->isValueDependent()) {
        ExprBits.TypeDependent = ExprBits.ValueDependent = true;
        ExprBits.InstantiationDependent = true;
      } else if (Start->isInstantiationDependent() ||
                 End->isInstantiationDependent()) {
        ExprBits.InstantiationDependent = true;
      }

      // Propagate unexpanded parameter packs.
      if (Start->containsUnexpandedParameterPack() ||
          End->containsUnexpandedParameterPack())
        ExprBits.ContainsUnexpandedParameterPack = true;

      // Copy the start/end expressions into permanent storage.
      *Child++ = IndexExprs[IndexIdx++];
      *Child++ = IndexExprs[IndexIdx++];
    }
  }

  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
}

DesignatedInitExpr *
DesignatedInitExpr::Create(const ASTContext &C,
                           llvm::ArrayRef<Designator> Designators,
                           ArrayRef<Expr*> IndexExprs,
                           SourceLocation ColonOrEqualLoc,
                           bool UsesColonSyntax, Expr *Init) {
  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
                         alignof(DesignatedInitExpr));
  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
                                      ColonOrEqualLoc, UsesColonSyntax,
                                      IndexExprs, Init);
}

DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
                                                    unsigned NumIndexExprs) {
  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
                         alignof(DesignatedInitExpr));
  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
}

void DesignatedInitExpr::setDesignators(const ASTContext &C,
                                        const Designator *Desigs,
                                        unsigned NumDesigs) {
  Designators = new (C) Designator[NumDesigs];
  NumDesignators = NumDesigs;
  for (unsigned I = 0; I != NumDesigs; ++I)
    Designators[I] = Desigs[I];
}

SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
  if (size() == 1)
    return DIE->getDesignator(0)->getSourceRange();
  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
                     DIE->getDesignator(size() - 1)->getEndLoc());
}

SourceLocation DesignatedInitExpr::getBeginLoc() const {
  SourceLocation StartLoc;
  auto *DIE = const_cast<DesignatedInitExpr *>(this);
  Designator &First = *DIE->getDesignator(0);
  if (First.isFieldDesignator()) {
    if (GNUSyntax)
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
    else
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
  } else
    StartLoc =
      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
  return StartLoc;
}

SourceLocation DesignatedInitExpr::getEndLoc() const {
  return getInit()->getEndLoc();
}

Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
  return getSubExpr(D.ArrayOrRange.Index + 1);
}

Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
  assert(D.Kind == Designator::ArrayRangeDesignator &&
         "Requires array range designator");
  return getSubExpr(D.ArrayOrRange.Index + 1);
}

Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
  assert(D.Kind == Designator::ArrayRangeDesignator &&
         "Requires array range designator");
  return getSubExpr(D.ArrayOrRange.Index + 2);
}

/// Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
                                          const Designator *First,
                                          const Designator *Last) {
  unsigned NumNewDesignators = Last - First;
  if (NumNewDesignators == 0) {
    std::copy_backward(Designators + Idx + 1,
                       Designators + NumDesignators,
                       Designators + Idx);
    --NumNewDesignators;
    return;
  } else if (NumNewDesignators == 1) {
    Designators[Idx] = *First;
    return;
  }

  Designator *NewDesignators
    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
  std::copy(Designators, Designators + Idx, NewDesignators);
  std::copy(First, Last, NewDesignators + Idx);
  std::copy(Designators + Idx + 1, Designators + NumDesignators,
            NewDesignators + Idx + NumNewDesignators);
  Designators = NewDesignators;
  NumDesignators = NumDesignators - 1 + NumNewDesignators;
}

DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
    SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
         OK_Ordinary, false, false, false, false) {
  BaseAndUpdaterExprs[0] = baseExpr;

  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
  ILE->setType(baseExpr->getType());
  BaseAndUpdaterExprs[1] = ILE;
}

SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
  return getBase()->getBeginLoc();
}

SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
  return getBase()->getEndLoc();
}

ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
                             SourceLocation RParenLoc)
    : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
           false, false),
      LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
  ParenListExprBits.NumExprs = Exprs.size();

  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
    if (Exprs[I]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (Exprs[I]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (Exprs[I]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (Exprs[I]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    getTrailingObjects<Stmt *>()[I] = Exprs[I];
  }
}

ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
    : Expr(ParenListExprClass, Empty) {
  ParenListExprBits.NumExprs = NumExprs;
}

ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
                                     SourceLocation LParenLoc,
                                     ArrayRef<Expr *> Exprs,
                                     SourceLocation RParenLoc) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
                           alignof(ParenListExpr));
  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
}

ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
                                          unsigned NumExprs) {
  void *Mem =
      Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
}

const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
    e = ewc->getSubExpr();
  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
    e = m->GetTemporaryExpr();
  e = cast<CXXConstructExpr>(e)->getArg(0);
  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
    e = ice->getSubExpr();
  return cast<OpaqueValueExpr>(e);
}

PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
                                           EmptyShell sh,
                                           unsigned numSemanticExprs) {
  void *buffer =
      Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
                       alignof(PseudoObjectExpr));
  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
}

PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
  : Expr(PseudoObjectExprClass, shell) {
  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
}

PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
                                           ArrayRef<Expr*> semantics,
                                           unsigned resultIndex) {
  assert(syntax && "no syntactic expression!");
  assert(semantics.size() && "no semantic expressions!");

  QualType type;
  ExprValueKind VK;
  if (resultIndex == NoResult) {
    type = C.VoidTy;
    VK = VK_RValue;
  } else {
    assert(resultIndex < semantics.size());
    type = semantics[resultIndex]->getType();
    VK = semantics[resultIndex]->getValueKind();
    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
  }

  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
                            alignof(PseudoObjectExpr));
  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
                                      resultIndex);
}

PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
                                   Expr *syntax, ArrayRef<Expr*> semantics,
                                   unsigned resultIndex)
  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
         /*filled in at end of ctor*/ false, false, false, false) {
  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
  PseudoObjectExprBits.ResultIndex = resultIndex + 1;

  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
    Expr *E = (i == 0 ? syntax : semantics[i-1]);
    getSubExprsBuffer()[i] = E;

    if (E->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (E->isValueDependent())
      ExprBits.ValueDependent = true;
    if (E->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (E->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    if (isa<OpaqueValueExpr>(E))
      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
             "opaque-value semantic expressions for pseudo-object "
             "operations must have sources");
  }
}

//===----------------------------------------------------------------------===//
//  Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//

// UnaryExprOrTypeTraitExpr
Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
  const_child_range CCR =
      const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
}

Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
  // If this is of a type and the type is a VLA type (and not a typedef), the
  // size expression of the VLA needs to be treated as an executable expression.
  // Why isn't this weirdness documented better in StmtIterator?
  if (isArgumentType()) {
    if (const VariableArrayType *T =
            dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
      return const_child_range(const_child_iterator(T), const_child_iterator());
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
}

AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
                       QualType t, AtomicOp op, SourceLocation RP)
  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
         false, false, false, false),
    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
{
  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
  for (unsigned i = 0; i != args.size(); i++) {
    if (args[i]->isTypeDependent())
      ExprBits.TypeDependent = true;
    if (args[i]->isValueDependent())
      ExprBits.ValueDependent = true;
    if (args[i]->isInstantiationDependent())
      ExprBits.InstantiationDependent = true;
    if (args[i]->containsUnexpandedParameterPack())
      ExprBits.ContainsUnexpandedParameterPack = true;

    SubExprs[i] = args[i];
  }
}

unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
  switch (Op) {
  case AO__c11_atomic_init:
  case AO__opencl_atomic_init:
  case AO__c11_atomic_load:
  case AO__atomic_load_n:
    return 2;

  case AO__opencl_atomic_load:
  case AO__c11_atomic_store:
  case AO__c11_atomic_exchange:
  case AO__atomic_load:
  case AO__atomic_store:
  case AO__atomic_store_n:
  case AO__atomic_exchange_n:
  case AO__c11_atomic_fetch_add:
  case AO__c11_atomic_fetch_sub:
  case AO__c11_atomic_fetch_and:
  case AO__c11_atomic_fetch_or:
  case AO__c11_atomic_fetch_xor:
  case AO__atomic_fetch_add:
  case AO__atomic_fetch_sub:
  case AO__atomic_fetch_and:
  case AO__atomic_fetch_or:
  case AO__atomic_fetch_xor:
  case AO__atomic_fetch_nand:
  case AO__atomic_add_fetch:
  case AO__atomic_sub_fetch:
  case AO__atomic_and_fetch:
  case AO__atomic_or_fetch:
  case AO__atomic_xor_fetch:
  case AO__atomic_nand_fetch:
  case AO__atomic_fetch_min:
  case AO__atomic_fetch_max:
    return 3;

  case AO__opencl_atomic_store:
  case AO__opencl_atomic_exchange:
  case AO__opencl_atomic_fetch_add:
  case AO__opencl_atomic_fetch_sub:
  case AO__opencl_atomic_fetch_and:
  case AO__opencl_atomic_fetch_or:
  case AO__opencl_atomic_fetch_xor:
  case AO__opencl_atomic_fetch_min:
  case AO__opencl_atomic_fetch_max:
  case AO__atomic_exchange:
    return 4;

  case AO__c11_atomic_compare_exchange_strong:
  case AO__c11_atomic_compare_exchange_weak:
    return 5;

  case AO__opencl_atomic_compare_exchange_strong:
  case AO__opencl_atomic_compare_exchange_weak:
  case AO__atomic_compare_exchange:
  case AO__atomic_compare_exchange_n:
    return 6;
  }
  llvm_unreachable("unknown atomic op");
}

QualType AtomicExpr::getValueType() const {
  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
  if (auto AT = T->getAs<AtomicType>())
    return AT->getValueType();
  return T;
}

QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
  unsigned ArraySectionCount = 0;
  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
    Base = OASE->getBase();
    ++ArraySectionCount;
  }
  while (auto *ASE =
             dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
    Base = ASE->getBase();
    ++ArraySectionCount;
  }
  Base = Base->IgnoreParenImpCasts();
  auto OriginalTy = Base->getType();
  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
    if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
      OriginalTy = PVD->getOriginalType().getNonReferenceType();

  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
    if (OriginalTy->isAnyPointerType())
      OriginalTy = OriginalTy->getPointeeType();
    else {
      assert (OriginalTy->isArrayType());
      OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
    }
  }
  return OriginalTy;
}
OpenPOWER on IntegriCloud