summaryrefslogtreecommitdiffstats
path: root/clang/lib/AST/ASTContext.cpp
blob: 3455504fdb191ec92854355e48857dd94050c115 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/Serialize.h"
#include "llvm/Bitcode/Deserialize.h"

using namespace clang;

enum FloatingRank {
  FloatRank, DoubleRank, LongDoubleRank
};

ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
                       TargetInfo &t,
                       IdentifierTable &idents, SelectorTable &sels,
                       unsigned size_reserve) : 
  CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0),
  SourceMgr(SM), LangOpts(LOpts), Target(t), 
  Idents(idents), Selectors(sels)
{  
  if (size_reserve > 0) Types.reserve(size_reserve);    
  InitBuiltinTypes();
  BuiltinInfo.InitializeBuiltins(idents, Target);
  TUDecl = TranslationUnitDecl::Create(*this);
}

ASTContext::~ASTContext() {
  // Deallocate all the types.
  while (!Types.empty()) {
    Types.back()->Destroy(*this);
    Types.pop_back();
  }

  TUDecl->Destroy(*this);
}

void ASTContext::PrintStats() const {
  fprintf(stderr, "*** AST Context Stats:\n");
  fprintf(stderr, "  %d types total.\n", (int)Types.size());
  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
  
  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
  unsigned NumObjCQualifiedIds = 0;
  unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
  
  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    Type *T = Types[i];
    if (isa<BuiltinType>(T))
      ++NumBuiltin;
    else if (isa<PointerType>(T))
      ++NumPointer;
    else if (isa<BlockPointerType>(T))
      ++NumBlockPointer;
    else if (isa<ReferenceType>(T))
      ++NumReference;
    else if (isa<ComplexType>(T))
      ++NumComplex;
    else if (isa<ArrayType>(T))
      ++NumArray;
    else if (isa<VectorType>(T))
      ++NumVector;
    else if (isa<FunctionTypeNoProto>(T))
      ++NumFunctionNP;
    else if (isa<FunctionTypeProto>(T))
      ++NumFunctionP;
    else if (isa<TypedefType>(T))
      ++NumTypeName;
    else if (TagType *TT = dyn_cast<TagType>(T)) {
      ++NumTagged;
      switch (TT->getDecl()->getTagKind()) {
      default: assert(0 && "Unknown tagged type!");
      case TagDecl::TK_struct: ++NumTagStruct; break;
      case TagDecl::TK_union:  ++NumTagUnion; break;
      case TagDecl::TK_class:  ++NumTagClass; break; 
      case TagDecl::TK_enum:   ++NumTagEnum; break;
      }
    } else if (isa<ObjCInterfaceType>(T))
      ++NumObjCInterfaces;
    else if (isa<ObjCQualifiedInterfaceType>(T))
      ++NumObjCQualifiedInterfaces;
    else if (isa<ObjCQualifiedIdType>(T))
      ++NumObjCQualifiedIds;
    else if (isa<TypeOfType>(T))
      ++NumTypeOfTypes;
    else if (isa<TypeOfExpr>(T))
      ++NumTypeOfExprs;
    else {
      QualType(T, 0).dump();
      assert(0 && "Unknown type!");
    }
  }

  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
  fprintf(stderr, "    %d pointer types\n", NumPointer);
  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
  fprintf(stderr, "    %d reference types\n", NumReference);
  fprintf(stderr, "    %d complex types\n", NumComplex);
  fprintf(stderr, "    %d array types\n", NumArray);
  fprintf(stderr, "    %d vector types\n", NumVector);
  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
  fprintf(stderr, "    %d tagged types\n", NumTagged);
  fprintf(stderr, "      %d struct types\n", NumTagStruct);
  fprintf(stderr, "      %d union types\n", NumTagUnion);
  fprintf(stderr, "      %d class types\n", NumTagClass);
  fprintf(stderr, "      %d enum types\n", NumTagEnum);
  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
  fprintf(stderr, "    %d protocol qualified interface types\n",
          NumObjCQualifiedInterfaces);
  fprintf(stderr, "    %d protocol qualified id types\n",
          NumObjCQualifiedIds);
  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprs);
  
  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
    NumFunctionP*sizeof(FunctionTypeProto)+
    NumFunctionNP*sizeof(FunctionTypeNoProto)+
    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
}


void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
}

void ASTContext::InitBuiltinTypes() {
  assert(VoidTy.isNull() && "Context reinitialized?");
  
  // C99 6.2.5p19.
  InitBuiltinType(VoidTy,              BuiltinType::Void);
  
  // C99 6.2.5p2.
  InitBuiltinType(BoolTy,              BuiltinType::Bool);
  // C99 6.2.5p3.
  if (Target.isCharSigned())
    InitBuiltinType(CharTy,            BuiltinType::Char_S);
  else
    InitBuiltinType(CharTy,            BuiltinType::Char_U);
  // C99 6.2.5p4.
  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
  InitBuiltinType(ShortTy,             BuiltinType::Short);
  InitBuiltinType(IntTy,               BuiltinType::Int);
  InitBuiltinType(LongTy,              BuiltinType::Long);
  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
  
  // C99 6.2.5p6.
  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
  
  // C99 6.2.5p10.
  InitBuiltinType(FloatTy,             BuiltinType::Float);
  InitBuiltinType(DoubleTy,            BuiltinType::Double);
  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);

  // C++ 3.9.1p5
  InitBuiltinType(WCharTy,             BuiltinType::WChar);

  // Placeholder type for functions.
  InitBuiltinType(OverloadTy,          BuiltinType::Overload);

  // Placeholder type for type-dependent expressions whose type is
  // completely unknown. No code should ever check a type against
  // DependentTy and users should never see it; however, it is here to
  // help diagnose failures to properly check for type-dependent
  // expressions.
  InitBuiltinType(DependentTy,         BuiltinType::Dependent);

  // C99 6.2.5p11.
  FloatComplexTy      = getComplexType(FloatTy);
  DoubleComplexTy     = getComplexType(DoubleTy);
  LongDoubleComplexTy = getComplexType(LongDoubleTy);

  BuiltinVaListType = QualType();
  ObjCIdType = QualType();
  IdStructType = 0;
  ObjCClassType = QualType();
  ClassStructType = 0;
  
  ObjCConstantStringType = QualType();
  
  // void * type
  VoidPtrTy = getPointerType(VoidTy);
}

//===----------------------------------------------------------------------===//
//                         Type Sizing and Analysis
//===----------------------------------------------------------------------===//

/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
  const BuiltinType *BT = T->getAsBuiltinType();
  assert(BT && "Not a floating point type!");
  switch (BT->getKind()) {
  default: assert(0 && "Not a floating point type!");
  case BuiltinType::Float:      return Target.getFloatFormat();
  case BuiltinType::Double:     return Target.getDoubleFormat();
  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
  }
}


/// getTypeSize - Return the size of the specified type, in bits.  This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(const Type *T) {
  T = getCanonicalType(T);
  uint64_t Width;
  unsigned Align;
  switch (T->getTypeClass()) {
  case Type::TypeName: assert(0 && "Not a canonical type!");
  case Type::FunctionNoProto:
  case Type::FunctionProto:
  default:
    assert(0 && "Incomplete types have no size!");
  case Type::VariableArray:
    assert(0 && "VLAs not implemented yet!");
  case Type::DependentSizedArray:
    assert(0 && "Dependently-sized arrays don't have a known size");
  case Type::ConstantArray: {
    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
    
    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
    Width = EltInfo.first*CAT->getSize().getZExtValue();
    Align = EltInfo.second;
    break;
  }
  case Type::ExtVector:
  case Type::Vector: {
    std::pair<uint64_t, unsigned> EltInfo = 
      getTypeInfo(cast<VectorType>(T)->getElementType());
    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
    // FIXME: This isn't right for unusual vectors
    Align = Width;
    break;
  }

  case Type::Builtin:
    switch (cast<BuiltinType>(T)->getKind()) {
    default: assert(0 && "Unknown builtin type!");
    case BuiltinType::Void:
      assert(0 && "Incomplete types have no size!");
    case BuiltinType::Bool:
      Width = Target.getBoolWidth();
      Align = Target.getBoolAlign();
      break;
    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::UChar:
    case BuiltinType::SChar:
      Width = Target.getCharWidth();
      Align = Target.getCharAlign();
      break;
    case BuiltinType::WChar:
      Width = Target.getWCharWidth();
      Align = Target.getWCharAlign();
      break;
    case BuiltinType::UShort:
    case BuiltinType::Short:
      Width = Target.getShortWidth();
      Align = Target.getShortAlign();
      break;
    case BuiltinType::UInt:
    case BuiltinType::Int:
      Width = Target.getIntWidth();
      Align = Target.getIntAlign();
      break;
    case BuiltinType::ULong:
    case BuiltinType::Long:
      Width = Target.getLongWidth();
      Align = Target.getLongAlign();
      break;
    case BuiltinType::ULongLong:
    case BuiltinType::LongLong:
      Width = Target.getLongLongWidth();
      Align = Target.getLongLongAlign();
      break;
    case BuiltinType::Float:
      Width = Target.getFloatWidth();
      Align = Target.getFloatAlign();
      break;
    case BuiltinType::Double:
      Width = Target.getDoubleWidth();
      Align = Target.getDoubleAlign();
      break;
    case BuiltinType::LongDouble:
      Width = Target.getLongDoubleWidth();
      Align = Target.getLongDoubleAlign();
      break;
    }
    break;
  case Type::ASQual:
    // FIXME: Pointers into different addr spaces could have different sizes and
    // alignment requirements: getPointerInfo should take an AddrSpace.
    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
  case Type::ObjCQualifiedId:
    Width = Target.getPointerWidth(0);
    Align = Target.getPointerAlign(0);
    break;
  case Type::BlockPointer: {
    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
    Width = Target.getPointerWidth(AS);
    Align = Target.getPointerAlign(AS);
    break;
  }
  case Type::Pointer: {
    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
    Width = Target.getPointerWidth(AS);
    Align = Target.getPointerAlign(AS);
    break;
  }
  case Type::Reference:
    // "When applied to a reference or a reference type, the result is the size
    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
    // FIXME: This is wrong for struct layout: a reference in a struct has
    // pointer size.
    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
    
  case Type::Complex: {
    // Complex types have the same alignment as their elements, but twice the
    // size.
    std::pair<uint64_t, unsigned> EltInfo = 
      getTypeInfo(cast<ComplexType>(T)->getElementType());
    Width = EltInfo.first*2;
    Align = EltInfo.second;
    break;
  }
  case Type::ObjCInterface: {
    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
    Width = Layout.getSize();
    Align = Layout.getAlignment();
    break;
  }
  case Type::Tagged: {
    const TagType *TT = cast<TagType>(T);

    if (TT->getDecl()->isInvalidDecl()) {
      Width = 1;
      Align = 1;
      break;
    }
    
    if (const EnumType *ET = dyn_cast<EnumType>(TT))
      return getTypeInfo(ET->getDecl()->getIntegerType());

    const RecordType *RT = cast<RecordType>(TT);
    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
    Width = Layout.getSize();
    Align = Layout.getAlignment();
    break;
  }
  }
  
  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
  return std::make_pair(Width, Align);
}

/// LayoutField - Field layout.
void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
                                  bool IsUnion, unsigned StructPacking,
                                  ASTContext &Context) {
  unsigned FieldPacking = StructPacking;
  uint64_t FieldOffset = IsUnion ? 0 : Size;
  uint64_t FieldSize;
  unsigned FieldAlign;

  // FIXME: Should this override struct packing? Probably we want to
  // take the minimum?
  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
    FieldPacking = PA->getAlignment();
  
  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
    // TODO: Need to check this algorithm on other targets!
    //       (tested on Linux-X86)
    FieldSize = 
      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
    
    std::pair<uint64_t, unsigned> FieldInfo = 
      Context.getTypeInfo(FD->getType());
    uint64_t TypeSize = FieldInfo.first;
    
    // Determine the alignment of this bitfield. The packing
    // attributes define a maximum and the alignment attribute defines
    // a minimum.
    // FIXME: What is the right behavior when the specified alignment
    // is smaller than the specified packing?
    FieldAlign = FieldInfo.second;
    if (FieldPacking)
      FieldAlign = std::min(FieldAlign, FieldPacking);
    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
      FieldAlign = std::max(FieldAlign, AA->getAlignment());
    
    // Check if we need to add padding to give the field the correct
    // alignment.
    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
    
    // Padding members don't affect overall alignment
    if (!FD->getIdentifier())
      FieldAlign = 1;
  } else {
    if (FD->getType()->isIncompleteArrayType()) {
      // This is a flexible array member; we can't directly
      // query getTypeInfo about these, so we figure it out here.
      // Flexible array members don't have any size, but they
      // have to be aligned appropriately for their element type.
      FieldSize = 0;
      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
      FieldAlign = Context.getTypeAlign(ATy->getElementType());
    } else {
      std::pair<uint64_t, unsigned> FieldInfo = 
        Context.getTypeInfo(FD->getType());
      FieldSize = FieldInfo.first;
      FieldAlign = FieldInfo.second;
    }
    
    // Determine the alignment of this bitfield. The packing
    // attributes define a maximum and the alignment attribute defines
    // a minimum. Additionally, the packing alignment must be at least
    // a byte for non-bitfields.
    //
    // FIXME: What is the right behavior when the specified alignment
    // is smaller than the specified packing?
    if (FieldPacking)
      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
      FieldAlign = std::max(FieldAlign, AA->getAlignment());
    
    // Round up the current record size to the field's alignment boundary.
    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
  }
  
  // Place this field at the current location.
  FieldOffsets[FieldNo] = FieldOffset;
  
  // Reserve space for this field.
  if (IsUnion) {
    Size = std::max(Size, FieldSize);
  } else {
    Size = FieldOffset + FieldSize;
  }
  
  // Remember max struct/class alignment.
  Alignment = std::max(Alignment, FieldAlign);
}


/// getASTObjcInterfaceLayout - Get or compute information about the layout of
/// the specified Objective C, which indicates its size and ivar
/// position information.
const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
  // Look up this layout, if already laid out, return what we have.
  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
  if (Entry) return *Entry;

  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
  ASTRecordLayout *NewEntry = NULL;
  unsigned FieldCount = D->ivar_size();
  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
    FieldCount++;
    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
    unsigned Alignment = SL.getAlignment();
    uint64_t Size = SL.getSize();
    NewEntry = new ASTRecordLayout(Size, Alignment);
    NewEntry->InitializeLayout(FieldCount);
    // Super class is at the beginning of the layout.
    NewEntry->SetFieldOffset(0, 0);
  } else {
    NewEntry = new ASTRecordLayout();
    NewEntry->InitializeLayout(FieldCount);
  }
  Entry = NewEntry;

  unsigned StructPacking = 0;
  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
    StructPacking = PA->getAlignment();

  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), 
                                    AA->getAlignment()));

  // Layout each ivar sequentially.
  unsigned i = 0;
  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), 
       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
    const ObjCIvarDecl* Ivar = (*IVI);
    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
  }

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  NewEntry->FinalizeLayout();
  return *NewEntry;
}

/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
  D = D->getDefinition(*this);
  assert(D && "Cannot get layout of forward declarations!");

  // Look up this layout, if already laid out, return what we have.
  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
  if (Entry) return *Entry;

  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
  ASTRecordLayout *NewEntry = new ASTRecordLayout();
  Entry = NewEntry;

  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
  bool IsUnion = D->isUnion();

  unsigned StructPacking = 0;
  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
    StructPacking = PA->getAlignment();

  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), 
                                    AA->getAlignment()));

  // Layout each field, for now, just sequentially, respecting alignment.  In
  // the future, this will need to be tweakable by targets.
  unsigned FieldIdx = 0;
  for (RecordDecl::field_iterator Field = D->field_begin(),
                               FieldEnd = D->field_end();
       Field != FieldEnd; (void)++Field, ++FieldIdx)
    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  NewEntry->FinalizeLayout();
  return *NewEntry;
}

//===----------------------------------------------------------------------===//
//                   Type creation/memoization methods
//===----------------------------------------------------------------------===//

QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
  QualType CanT = getCanonicalType(T);
  if (CanT.getAddressSpace() == AddressSpace)
    return T;
  
  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
  // with CVR qualifiers from here on out.
  assert(CanT.getAddressSpace() == 0 &&
         "Type is already address space qualified");
  
  // Check if we've already instantiated an address space qual'd type of this
  // type.
  llvm::FoldingSetNodeID ID;
  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);      
  void *InsertPos = 0;
  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(ASQy, 0);
    
  // If the base type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getASQualType(CanT, AddressSpace);
    
    // Get the new insert position for the node we care about.
    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
  ASQualTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, T.getCVRQualifiers());
}


/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ComplexType::Profile(ID, T);
  
  void *InsertPos = 0;
  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(CT, 0);
  
  // If the pointee type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getComplexType(getCanonicalType(T));
    
    // Get the new insert position for the node we care about.
    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  ComplexType *New = new ComplexType(T, Canonical);
  Types.push_back(New);
  ComplexTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}


/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  PointerType::Profile(ID, T);
  
  void *InsertPos = 0;
  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);
  
  // If the pointee type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getPointerType(getCanonicalType(T));
   
    // Get the new insert position for the node we care about.
    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  PointerType *New = new PointerType(T, Canonical);
  Types.push_back(New);
  PointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getBlockPointerType - Return the uniqued reference to the type for 
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) {
  assert(T->isFunctionType() && "block of function types only");
  // Unique pointers, to guarantee there is only one block of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  BlockPointerType::Profile(ID, T);
  
  void *InsertPos = 0;
  if (BlockPointerType *PT =
        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);
  
  // If the block pointee type isn't canonical, this won't be a canonical 
  // type either so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getBlockPointerType(getCanonicalType(T));
    
    // Get the new insert position for the node we care about.
    BlockPointerType *NewIP =
      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  BlockPointerType *New = new BlockPointerType(T, Canonical);
  Types.push_back(New);
  BlockPointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ReferenceType::Profile(ID, T);

  void *InsertPos = 0;
  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(RT, 0);
  
  // If the referencee type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getReferenceType(getCanonicalType(T));
   
    // Get the new insert position for the node we care about.
    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }

  ReferenceType *New = new ReferenceType(T, Canonical);
  Types.push_back(New);
  ReferenceTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getConstantArrayType - Return the unique reference to the type for an 
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy, 
                                          const llvm::APInt &ArySize,
                                          ArrayType::ArraySizeModifier ASM,
                                          unsigned EltTypeQuals) {
  llvm::FoldingSetNodeID ID;
  ConstantArrayType::Profile(ID, EltTy, ArySize);
      
  void *InsertPos = 0;
  if (ConstantArrayType *ATP = 
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(ATP, 0);
  
  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!EltTy->isCanonical()) {
    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, 
                                     ASM, EltTypeQuals);
    // Get the new insert position for the node we care about.
    ConstantArrayType *NewIP = 
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  
  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
                                                 ASM, EltTypeQuals);
  ConstantArrayTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
                                          ArrayType::ArraySizeModifier ASM,
                                          unsigned EltTypeQuals) {
  // Since we don't unique expressions, it isn't possible to unique VLA's
  // that have an expression provided for their size.

  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, 
                                                 ASM, EltTypeQuals);

  VariableArrayTypes.push_back(New);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type. FIXME: We will need these to be uniqued, or at least
/// comparable, at some point.
QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
                                                ArrayType::ArraySizeModifier ASM,
                                                unsigned EltTypeQuals) {
  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) && 
         "Size must be type- or value-dependent!");

  // Since we don't unique expressions, it isn't possible to unique
  // dependently-sized array types.

  DependentSizedArrayType *New 
    = new DependentSizedArrayType(EltTy, QualType(), NumElts, 
                                  ASM, EltTypeQuals);

  DependentSizedArrayTypes.push_back(New);
  Types.push_back(New);
  return QualType(New, 0);
}

QualType ASTContext::getIncompleteArrayType(QualType EltTy,
                                            ArrayType::ArraySizeModifier ASM,
                                            unsigned EltTypeQuals) {
  llvm::FoldingSetNodeID ID;
  IncompleteArrayType::Profile(ID, EltTy);

  void *InsertPos = 0;
  if (IncompleteArrayType *ATP = 
       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(ATP, 0);

  // If the element type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;

  if (!EltTy->isCanonical()) {
    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
                                       ASM, EltTypeQuals);

    // Get the new insert position for the node we care about.
    IncompleteArrayType *NewIP =
      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }

  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
                                                     ASM, EltTypeQuals);

  IncompleteArrayTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
  BuiltinType *baseType;
  
  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
         
  // Check if we've already instantiated a vector of this type.
  llvm::FoldingSetNodeID ID;
  VectorType::Profile(ID, vecType, NumElts, Type::Vector);      
  void *InsertPos = 0;
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(VTP, 0);

  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!vecType->isCanonical()) {
    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
    
    // Get the new insert position for the node we care about.
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  VectorType *New = new VectorType(vecType, NumElts, Canonical);
  VectorTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
  BuiltinType *baseType;
  
  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
         
  // Check if we've already instantiated a vector of this type.
  llvm::FoldingSetNodeID ID;
  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);      
  void *InsertPos = 0;
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(VTP, 0);

  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!vecType->isCanonical()) {
    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
    
    // Get the new insert position for the node we care about.
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical);
  VectorTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
  // Unique functions, to guarantee there is only one function of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  FunctionTypeNoProto::Profile(ID, ResultTy);
  
  void *InsertPos = 0;
  if (FunctionTypeNoProto *FT = 
        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(FT, 0);
  
  QualType Canonical;
  if (!ResultTy->isCanonical()) {
    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
    
    // Get the new insert position for the node we care about.
    FunctionTypeNoProto *NewIP =
      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  
  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
  Types.push_back(New);
  FunctionTypeNoProtos.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getFunctionType - Return a normal function type with a typed argument
/// list.  isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
                                     unsigned NumArgs, bool isVariadic,
                                     unsigned TypeQuals) {
  // Unique functions, to guarantee there is only one function of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
                             TypeQuals);

  void *InsertPos = 0;
  if (FunctionTypeProto *FTP = 
        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(FTP, 0);
    
  // Determine whether the type being created is already canonical or not.  
  bool isCanonical = ResultTy->isCanonical();
  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
    if (!ArgArray[i]->isCanonical())
      isCanonical = false;

  // If this type isn't canonical, get the canonical version of it.
  QualType Canonical;
  if (!isCanonical) {
    llvm::SmallVector<QualType, 16> CanonicalArgs;
    CanonicalArgs.reserve(NumArgs);
    for (unsigned i = 0; i != NumArgs; ++i)
      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
    
    Canonical = getFunctionType(getCanonicalType(ResultTy),
                                &CanonicalArgs[0], NumArgs,
                                isVariadic, TypeQuals);
    
    // Get the new insert position for the node we care about.
    FunctionTypeProto *NewIP =
      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  
  // FunctionTypeProto objects are not allocated with new because they have a
  // variable size array (for parameter types) at the end of them.
  FunctionTypeProto *FTP = 
    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + 
                               NumArgs*sizeof(QualType));
  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
                              TypeQuals, Canonical);
  Types.push_back(FTP);
  FunctionTypeProtos.InsertNode(FTP, InsertPos);
  return QualType(FTP, 0);
}

/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
  assert(Decl && "Passed null for Decl param");
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
  
  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
    return getTypedefType(Typedef);
  else if (TemplateTypeParmDecl *TP = dyn_cast<TemplateTypeParmDecl>(Decl))
    return getTemplateTypeParmType(TP);
  else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
    return getObjCInterfaceType(ObjCInterface);

  if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Decl)) {
    Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
                                 : new CXXRecordType(CXXRecord);
  }
  else if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
    Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
                                 : new RecordType(Record);
  }
  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl))
    Decl->TypeForDecl = new EnumType(Enum);
  else
    assert(false && "TypeDecl without a type?");

  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
  return QualType(Decl->TypeForDecl, 0);
}

/// setTagDefinition - Used by RecordDecl::completeDefinition and
/// EnumDecl::completeDefinition to inform about which
/// RecordDecl/EnumDecl serves as the definition of a particular
/// struct/union/class/enum.
void ASTContext::setTagDefinition(TagDecl* D) {
  assert (D->isDefinition());
  if (!D->TypeForDecl)
    getTypeDeclType(D);
  else
    cast<TagType>(D->TypeForDecl)->decl = D;  
}

/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
  
  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
  Types.push_back(Decl->TypeForDecl);
  return QualType(Decl->TypeForDecl, 0);
}

/// getTemplateTypeParmType - Return the unique reference to the type
/// for the specified template type parameter declaration. 
QualType ASTContext::getTemplateTypeParmType(TemplateTypeParmDecl *Decl) {
  if (!Decl->TypeForDecl) {
    Decl->TypeForDecl = new TemplateTypeParmType(Decl);
    Types.push_back(Decl->TypeForDecl);
  }
  return QualType(Decl->TypeForDecl, 0);
}

/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl.
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
  
  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
  Types.push_back(Decl->TypeForDecl);
  return QualType(Decl->TypeForDecl, 0);
}

/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
                            const ObjCProtocolDecl *RHS) {
  return LHS->getDeclName() < RHS->getDeclName();
}

static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
                                   unsigned &NumProtocols) {
  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
  
  // Sort protocols, keyed by name.
  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);

  // Remove duplicates.
  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
  NumProtocols = ProtocolsEnd-Protocols;
}


/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
/// the given interface decl and the conforming protocol list.
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
  // Sort the protocol list alphabetically to canonicalize it.
  SortAndUniqueProtocols(Protocols, NumProtocols);
  
  llvm::FoldingSetNodeID ID;
  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
  
  void *InsertPos = 0;
  if (ObjCQualifiedInterfaceType *QT =
      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(QT, 0);
  
  // No Match;
  ObjCQualifiedInterfaceType *QType =
    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
  Types.push_back(QType);
  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
  return QualType(QType, 0);
}

/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
/// and the conforming protocol list.
QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, 
                                            unsigned NumProtocols) {
  // Sort the protocol list alphabetically to canonicalize it.
  SortAndUniqueProtocols(Protocols, NumProtocols);

  llvm::FoldingSetNodeID ID;
  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
  
  void *InsertPos = 0;
  if (ObjCQualifiedIdType *QT =
        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(QT, 0);
  
  // No Match;
  ObjCQualifiedIdType *QType = new ObjCQualifiedIdType(Protocols, NumProtocols);
  Types.push_back(QType);
  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
  return QualType(QType, 0);
}

/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExpr AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates 
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
  QualType Canonical = getCanonicalType(tofExpr->getType());
  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
  Types.push_back(toe);
  return QualType(toe, 0);
}

/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates 
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
  QualType Canonical = getCanonicalType(tofType);
  TypeOfType *tot = new TypeOfType(tofType, Canonical);
  Types.push_back(tot);
  return QualType(tot, 0);
}

/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
  assert (Decl);
  return getTypeDeclType(Decl);
}

/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 
/// needs to agree with the definition in <stddef.h>. 
QualType ASTContext::getSizeType() const {
  return getFromTargetType(Target.getSizeType());
}

/// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the
/// width of characters in wide strings, The value is target dependent and 
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getWCharType() const {
  if (LangOpts.CPlusPlus)
    return WCharTy;

  // FIXME: In C, shouldn't WCharTy just be a typedef of the target's
  // wide-character type?
  return getFromTargetType(Target.getWCharType());
}

/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getSignedWCharType() const {
  // FIXME: derive from "Target" ?
  return WCharTy;
}

/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getUnsignedWCharType() const {
  // FIXME: derive from "Target" ?
  return UnsignedIntTy;
}

/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
  return getFromTargetType(Target.getPtrDiffType(0));
}

//===----------------------------------------------------------------------===//
//                              Type Operators
//===----------------------------------------------------------------------===//

/// getCanonicalType - Return the canonical (structural) type corresponding to
/// the specified potentially non-canonical type.  The non-canonical version
/// of a type may have many "decorated" versions of types.  Decorators can
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
/// to be free of any of these, allowing two canonical types to be compared
/// for exact equality with a simple pointer comparison.
QualType ASTContext::getCanonicalType(QualType T) {
  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
  
  // If the result has type qualifiers, make sure to canonicalize them as well.
  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
  if (TypeQuals == 0) return CanType;

  // If the type qualifiers are on an array type, get the canonical type of the
  // array with the qualifiers applied to the element type.
  ArrayType *AT = dyn_cast<ArrayType>(CanType);
  if (!AT)
    return CanType.getQualifiedType(TypeQuals);
  
  // Get the canonical version of the element with the extra qualifiers on it.
  // This can recursively sink qualifiers through multiple levels of arrays.
  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
  NewEltTy = getCanonicalType(NewEltTy);
  
  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
                                CAT->getIndexTypeQualifier());
  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
                                  IAT->getIndexTypeQualifier());
  
  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
                                      DSAT->getSizeModifier(),
                                      DSAT->getIndexTypeQualifier());    

  VariableArrayType *VAT = cast<VariableArrayType>(AT);
  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
                              VAT->getSizeModifier(),
                              VAT->getIndexTypeQualifier());
}


const ArrayType *ASTContext::getAsArrayType(QualType T) {
  // Handle the non-qualified case efficiently.
  if (T.getCVRQualifiers() == 0) {
    // Handle the common positive case fast.
    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
      return AT;
  }
  
  // Handle the common negative case fast, ignoring CVR qualifiers.
  QualType CType = T->getCanonicalTypeInternal();
    
  // Make sure to look through type qualifiers (like ASQuals) for the negative
  // test.
  if (!isa<ArrayType>(CType) &&
      !isa<ArrayType>(CType.getUnqualifiedType()))
    return 0;
  
  // Apply any CVR qualifiers from the array type to the element type.  This
  // implements C99 6.7.3p8: "If the specification of an array type includes
  // any type qualifiers, the element type is so qualified, not the array type."
  
  // If we get here, we either have type qualifiers on the type, or we have
  // sugar such as a typedef in the way.  If we have type qualifiers on the type
  // we must propagate them down into the elemeng type.
  unsigned CVRQuals = T.getCVRQualifiers();
  unsigned AddrSpace = 0;
  Type *Ty = T.getTypePtr();
  
  // Rip through ASQualType's and typedefs to get to a concrete type.
  while (1) {
    if (const ASQualType *ASQT = dyn_cast<ASQualType>(Ty)) {
      AddrSpace = ASQT->getAddressSpace();
      Ty = ASQT->getBaseType();
    } else {
      T = Ty->getDesugaredType();
      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
        break;
      CVRQuals |= T.getCVRQualifiers();
      Ty = T.getTypePtr();
    }
  }
  
  // If we have a simple case, just return now.
  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
    return ATy;
  
  // Otherwise, we have an array and we have qualifiers on it.  Push the
  // qualifiers into the array element type and return a new array type.
  // Get the canonical version of the element with the extra qualifiers on it.
  // This can recursively sink qualifiers through multiple levels of arrays.
  QualType NewEltTy = ATy->getElementType();
  if (AddrSpace)
    NewEltTy = getASQualType(NewEltTy, AddrSpace);
  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
  
  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
                                                CAT->getSizeModifier(),
                                                CAT->getIndexTypeQualifier()));
  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
                                                  IAT->getSizeModifier(),
                                                 IAT->getIndexTypeQualifier()));

  if (const DependentSizedArrayType *DSAT 
        = dyn_cast<DependentSizedArrayType>(ATy))
    return cast<ArrayType>(
                     getDependentSizedArrayType(NewEltTy, 
                                                DSAT->getSizeExpr(),
                                                DSAT->getSizeModifier(),
                                                DSAT->getIndexTypeQualifier()));
  
  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
                                              VAT->getSizeModifier(),
                                              VAT->getIndexTypeQualifier()));
}


/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer.  This operation is non-trivial when
/// handling typedefs etc.  The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType ASTContext::getArrayDecayedType(QualType Ty) {
  // Get the element type with 'getAsArrayType' so that we don't lose any
  // typedefs in the element type of the array.  This also handles propagation
  // of type qualifiers from the array type into the element type if present
  // (C99 6.7.3p8).
  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
  assert(PrettyArrayType && "Not an array type!");
  
  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());

  // int x[restrict 4] ->  int *restrict
  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
}

/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
  if (const ComplexType *CT = T->getAsComplexType())
    return getFloatingRank(CT->getElementType());

  switch (T->getAsBuiltinType()->getKind()) {
  default: assert(0 && "getFloatingRank(): not a floating type");
  case BuiltinType::Float:      return FloatRank;
  case BuiltinType::Double:     return DoubleRank;
  case BuiltinType::LongDouble: return LongDoubleRank;
  }
}

/// getFloatingTypeOfSizeWithinDomain - Returns a real floating 
/// point or a complex type (based on typeDomain/typeSize). 
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
                                                       QualType Domain) const {
  FloatingRank EltRank = getFloatingRank(Size);
  if (Domain->isComplexType()) {
    switch (EltRank) {
    default: assert(0 && "getFloatingRank(): illegal value for rank");
    case FloatRank:      return FloatComplexTy;
    case DoubleRank:     return DoubleComplexTy;
    case LongDoubleRank: return LongDoubleComplexTy;
    }
  }

  assert(Domain->isRealFloatingType() && "Unknown domain!");
  switch (EltRank) {
  default: assert(0 && "getFloatingRank(): illegal value for rank");
  case FloatRank:      return FloatTy;
  case DoubleRank:     return DoubleTy;
  case LongDoubleRank: return LongDoubleTy;
  }
}

/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
/// LHS < RHS, return -1. 
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
  FloatingRank LHSR = getFloatingRank(LHS);
  FloatingRank RHSR = getFloatingRank(RHS);
  
  if (LHSR == RHSR)
    return 0;
  if (LHSR > RHSR)
    return 1;
  return -1;
}

/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum,
/// or if it is not canonicalized.
static unsigned getIntegerRank(Type *T) {
  assert(T->isCanonical() && "T should be canonicalized");
  if (isa<EnumType>(T))
    return 4;
  
  switch (cast<BuiltinType>(T)->getKind()) {
  default: assert(0 && "getIntegerRank(): not a built-in integer");
  case BuiltinType::Bool:
    return 1;
  case BuiltinType::Char_S:
  case BuiltinType::Char_U:
  case BuiltinType::SChar:
  case BuiltinType::UChar:
    return 2;
  case BuiltinType::Short:
  case BuiltinType::UShort:
    return 3;
  case BuiltinType::Int:
  case BuiltinType::UInt:
    return 4;
  case BuiltinType::Long:
  case BuiltinType::ULong:
    return 5;
  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    return 6;
  }
}

/// getIntegerTypeOrder - Returns the highest ranked integer type: 
/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
/// LHS < RHS, return -1. 
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
  Type *LHSC = getCanonicalType(LHS).getTypePtr();
  Type *RHSC = getCanonicalType(RHS).getTypePtr();
  if (LHSC == RHSC) return 0;
  
  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
  
  unsigned LHSRank = getIntegerRank(LHSC);
  unsigned RHSRank = getIntegerRank(RHSC);
  
  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
    if (LHSRank == RHSRank) return 0;
    return LHSRank > RHSRank ? 1 : -1;
  }
  
  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
  if (LHSUnsigned) {
    // If the unsigned [LHS] type is larger, return it.
    if (LHSRank >= RHSRank)
      return 1;
    
    // If the signed type can represent all values of the unsigned type, it
    // wins.  Because we are dealing with 2's complement and types that are
    // powers of two larger than each other, this is always safe. 
    return -1;
  }

  // If the unsigned [RHS] type is larger, return it.
  if (RHSRank >= LHSRank)
    return -1;
  
  // If the signed type can represent all values of the unsigned type, it
  // wins.  Because we are dealing with 2's complement and types that are
  // powers of two larger than each other, this is always safe. 
  return 1;
}

// getCFConstantStringType - Return the type used for constant CFStrings. 
QualType ASTContext::getCFConstantStringType() {
  if (!CFConstantStringTypeDecl) {
    CFConstantStringTypeDecl = 
      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), 
                         &Idents.get("NSConstantString"));
    QualType FieldTypes[4];
  
    // const int *isa;
    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));  
    // int flags;
    FieldTypes[1] = IntTy;
    // const char *str;
    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));  
    // long length;
    FieldTypes[3] = LongTy;  
  
    // Create fields
    for (unsigned i = 0; i < 4; ++i) {
      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, 
                                           SourceLocation(), 0,
                                           FieldTypes[i], /*BitWidth=*/0, 
                                           /*Mutable=*/false, /*PrevDecl=*/0);
      CFConstantStringTypeDecl->addDecl(*this, Field, true);
    }

    CFConstantStringTypeDecl->completeDefinition(*this);
  }
  
  return getTagDeclType(CFConstantStringTypeDecl);
}

QualType ASTContext::getObjCFastEnumerationStateType()
{
  if (!ObjCFastEnumerationStateTypeDecl) {
    ObjCFastEnumerationStateTypeDecl =
      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
                         &Idents.get("__objcFastEnumerationState"));
    
    QualType FieldTypes[] = {
      UnsignedLongTy,
      getPointerType(ObjCIdType),
      getPointerType(UnsignedLongTy),
      getConstantArrayType(UnsignedLongTy,
                           llvm::APInt(32, 5), ArrayType::Normal, 0)
    };
    
    for (size_t i = 0; i < 4; ++i) {
      FieldDecl *Field = FieldDecl::Create(*this, 
                                           ObjCFastEnumerationStateTypeDecl, 
                                           SourceLocation(), 0, 
                                           FieldTypes[i], /*BitWidth=*/0, 
                                           /*Mutable=*/false, /*PrevDecl=*/0);
      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field, true);
    }
    
    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
  }
  
  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
}

// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
      return II->isStr("BOOL");
        
  return false;
}

/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
int ASTContext::getObjCEncodingTypeSize(QualType type) {
  uint64_t sz = getTypeSize(type);
  
  // Make all integer and enum types at least as large as an int
  if (sz > 0 && type->isIntegralType())
    sz = std::max(sz, getTypeSize(IntTy));
  // Treat arrays as pointers, since that's how they're passed in.
  else if (type->isArrayType())
    sz = getTypeSize(VoidPtrTy);
  return sz / getTypeSize(CharTy);
}

/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 
                                              std::string& S) {
  // FIXME: This is not very efficient.
  // Encode type qualifer, 'in', 'inout', etc. for the return type.
  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
  // Encode result type.
  getObjCEncodingForType(Decl->getResultType(), S);
  // Compute size of all parameters.
  // Start with computing size of a pointer in number of bytes.
  // FIXME: There might(should) be a better way of doing this computation!
  SourceLocation Loc;
  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
  // The first two arguments (self and _cmd) are pointers; account for
  // their size.
  int ParmOffset = 2 * PtrSize;
  int NumOfParams = Decl->getNumParams();
  for (int i = 0; i < NumOfParams; i++) {
    QualType PType = Decl->getParamDecl(i)->getType();
    int sz = getObjCEncodingTypeSize (PType);
    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
    ParmOffset += sz;
  }
  S += llvm::utostr(ParmOffset);
  S += "@0:";
  S += llvm::utostr(PtrSize);
  
  // Argument types.
  ParmOffset = 2 * PtrSize;
  for (int i = 0; i < NumOfParams; i++) {
    QualType PType = Decl->getParamDecl(i)->getType();
    // Process argument qualifiers for user supplied arguments; such as,
    // 'in', 'inout', etc.
    getObjCEncodingForTypeQualifier(
      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
    getObjCEncodingForType(PType, S);
    S += llvm::utostr(ParmOffset);
    ParmOffset += getObjCEncodingTypeSize(PType);
  }
}

/// getObjCEncodingForPropertyDecl - Return the encoded type for this
/// method declaration. If non-NULL, Container must be either an
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
/// NULL when getting encodings for protocol properties.
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 
                                                const Decl *Container,
                                                std::string& S) {
  // Collect information from the property implementation decl(s).
  bool Dynamic = false;
  ObjCPropertyImplDecl *SynthesizePID = 0;

  // FIXME: Duplicated code due to poor abstraction.
  if (Container) {
    if (const ObjCCategoryImplDecl *CID = 
        dyn_cast<ObjCCategoryImplDecl>(Container)) {
      for (ObjCCategoryImplDecl::propimpl_iterator
             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
        ObjCPropertyImplDecl *PID = *i;
        if (PID->getPropertyDecl() == PD) {
          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
            Dynamic = true;
          } else {
            SynthesizePID = PID;
          }
        }
      }
    } else {
      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
      for (ObjCCategoryImplDecl::propimpl_iterator
             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
        ObjCPropertyImplDecl *PID = *i;
        if (PID->getPropertyDecl() == PD) {
          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
            Dynamic = true;
          } else {
            SynthesizePID = PID;
          }
        }
      }      
    }
  }

  // FIXME: This is not very efficient.
  S = "T";

  // Encode result type.
  // FIXME: GCC uses a generating_property_type_encoding mode during
  // this part. Investigate.
  getObjCEncodingForType(PD->getType(), S);

  if (PD->isReadOnly()) {
    S += ",R";
  } else {
    switch (PD->getSetterKind()) {
    case ObjCPropertyDecl::Assign: break;
    case ObjCPropertyDecl::Copy:   S += ",C"; break;
    case ObjCPropertyDecl::Retain: S += ",&"; break;      
    }
  }

  // It really isn't clear at all what this means, since properties
  // are "dynamic by default".
  if (Dynamic)
    S += ",D";

  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
    S += ",G";
    S += PD->getGetterName().getAsString();
  }

  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
    S += ",S";
    S += PD->getSetterName().getAsString();
  }

  if (SynthesizePID) {
    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
    S += ",V";
    S += OID->getNameAsString();
  }

  // FIXME: OBJCGC: weak & strong
}

void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
                                        bool NameFields) const {
  // We follow the behavior of gcc, expanding structures which are
  // directly pointed to, and expanding embedded structures. Note that
  // these rules are sufficient to prevent recursive encoding of the
  // same type.
  getObjCEncodingForTypeImpl(T, S, true, true, NameFields);
}

void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
                                            bool ExpandPointedToStructures,
                                            bool ExpandStructures,
                                            bool NameFields) const {
  if (const BuiltinType *BT = T->getAsBuiltinType()) {
    char encoding;
    switch (BT->getKind()) {
    default: assert(0 && "Unhandled builtin type kind");          
    case BuiltinType::Void:       encoding = 'v'; break;
    case BuiltinType::Bool:       encoding = 'B'; break;
    case BuiltinType::Char_U:
    case BuiltinType::UChar:      encoding = 'C'; break;
    case BuiltinType::UShort:     encoding = 'S'; break;
    case BuiltinType::UInt:       encoding = 'I'; break;
    case BuiltinType::ULong:      encoding = 'L'; break;
    case BuiltinType::ULongLong:  encoding = 'Q'; break;
    case BuiltinType::Char_S:
    case BuiltinType::SChar:      encoding = 'c'; break;
    case BuiltinType::Short:      encoding = 's'; break;
    case BuiltinType::Int:        encoding = 'i'; break;
    case BuiltinType::Long:       encoding = 'l'; break;
    case BuiltinType::LongLong:   encoding = 'q'; break;
    case BuiltinType::Float:      encoding = 'f'; break;
    case BuiltinType::Double:     encoding = 'd'; break;
    case BuiltinType::LongDouble: encoding = 'd'; break;
    }
    
    S += encoding;
  }
  else if (T->isObjCQualifiedIdType()) {
    // Treat id<P...> same as 'id' for encoding purposes.
    return getObjCEncodingForTypeImpl(getObjCIdType(), S, 
                                      ExpandPointedToStructures,
                                      ExpandStructures, NameFields);    
  }
  else if (const PointerType *PT = T->getAsPointerType()) {
    QualType PointeeTy = PT->getPointeeType();
    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
      S += '@';
      return;
    } else if (isObjCClassType(PointeeTy)) {
      S += '#';
      return;
    } else if (isObjCSelType(PointeeTy)) {
      S += ':';
      return;
    }
    
    if (PointeeTy->isCharType()) {
      // char pointer types should be encoded as '*' unless it is a
      // type that has been typedef'd to 'BOOL'.
      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
        S += '*';
        return;
      }
    }
    
    S += '^';
    getObjCEncodingForTypeImpl(PT->getPointeeType(), S, 
                               false, ExpandPointedToStructures, 
                               NameFields);
  } else if (const ArrayType *AT =
               // Ignore type qualifiers etc.
               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
    S += '[';
    
    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
      S += llvm::utostr(CAT->getSize().getZExtValue());
    else
      assert(0 && "Unhandled array type!");
    
    getObjCEncodingForTypeImpl(AT->getElementType(), S, 
                               false, ExpandStructures, NameFields);
    S += ']';
  } else if (T->getAsFunctionType()) {
    S += '?';
  } else if (const RecordType *RTy = T->getAsRecordType()) {
    RecordDecl *RDecl = RTy->getDecl();
    S += RDecl->isUnion() ? '(' : '{';
    // Anonymous structures print as '?'
    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
      S += II->getName();
    } else {
      S += '?';
    }
    if (ExpandStructures) {
      S += '=';
      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
                                   FieldEnd = RDecl->field_end();
           Field != FieldEnd; ++Field) {
        if (NameFields) {
          S += '"';
          S += Field->getNameAsString();
          S += '"';
        }
        
        // Special case bit-fields.
        if (const Expr *E = Field->getBitWidth()) {
          // FIXME: Fix constness.
          ASTContext *Ctx = const_cast<ASTContext*>(this);
          unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
          // FIXME: Obj-C is losing information about the type size
          // here. Investigate if this is a problem.
          S += 'b';
          S += llvm::utostr(N);
        } else {
          getObjCEncodingForTypeImpl(Field->getType(), S, false, true, 
                                     NameFields);
        }
      }
    }
    S += RDecl->isUnion() ? ')' : '}';
  } else if (T->isEnumeralType()) {
    S += 'i';
  } else if (T->isBlockPointerType()) {
    S += '^'; // This type string is the same as general pointers.
  } else
    assert(0 && "@encode for type not implemented!");
}

void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 
                                                 std::string& S) const {
  if (QT & Decl::OBJC_TQ_In)
    S += 'n';
  if (QT & Decl::OBJC_TQ_Inout)
    S += 'N';
  if (QT & Decl::OBJC_TQ_Out)
    S += 'o';
  if (QT & Decl::OBJC_TQ_Bycopy)
    S += 'O';
  if (QT & Decl::OBJC_TQ_Byref)
    S += 'R';
  if (QT & Decl::OBJC_TQ_Oneway)
    S += 'V';
}

void ASTContext::setBuiltinVaListType(QualType T)
{
  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
    
  BuiltinVaListType = T;
}

void ASTContext::setObjCIdType(TypedefDecl *TD)
{
  ObjCIdType = getTypedefType(TD);

  // typedef struct objc_object *id;
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
  assert(ptr && "'id' incorrectly typed");
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
  assert(rec && "'id' incorrectly typed");
  IdStructType = rec;
}

void ASTContext::setObjCSelType(TypedefDecl *TD)
{
  ObjCSelType = getTypedefType(TD);

  // typedef struct objc_selector *SEL;
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
  assert(ptr && "'SEL' incorrectly typed");
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
  assert(rec && "'SEL' incorrectly typed");
  SelStructType = rec;
}

void ASTContext::setObjCProtoType(QualType QT)
{
  ObjCProtoType = QT;
}

void ASTContext::setObjCClassType(TypedefDecl *TD)
{
  ObjCClassType = getTypedefType(TD);

  // typedef struct objc_class *Class;
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
  assert(ptr && "'Class' incorrectly typed");
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
  assert(rec && "'Class' incorrectly typed");
  ClassStructType = rec;
}

void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
  assert(ObjCConstantStringType.isNull() && 
         "'NSConstantString' type already set!");
  
  ObjCConstantStringType = getObjCInterfaceType(Decl);
}

/// getFromTargetType - Given one of the integer types provided by
/// TargetInfo, produce the corresponding type. The unsigned @p Type
/// is actually a value of type @c TargetInfo::IntType.
QualType ASTContext::getFromTargetType(unsigned Type) const {
  switch (Type) {
  case TargetInfo::NoInt: return QualType(); 
  case TargetInfo::SignedShort: return ShortTy;
  case TargetInfo::UnsignedShort: return UnsignedShortTy;
  case TargetInfo::SignedInt: return IntTy;
  case TargetInfo::UnsignedInt: return UnsignedIntTy;
  case TargetInfo::SignedLong: return LongTy;
  case TargetInfo::UnsignedLong: return UnsignedLongTy;
  case TargetInfo::SignedLongLong: return LongLongTy;
  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
  }

  assert(false && "Unhandled TargetInfo::IntType value");
  return QualType();
}

//===----------------------------------------------------------------------===//
//                        Type Predicates.
//===----------------------------------------------------------------------===//

/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
/// to an object type.  This includes "id" and "Class" (two 'special' pointers
/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
/// ID type).
bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
  if (Ty->isObjCQualifiedIdType())
    return true;
  
  // Blocks are objects.
  if (Ty->isBlockPointerType())
    return true;
    
  // All other object types are pointers.
  if (!Ty->isPointerType())
    return false;
  
  // Check to see if this is 'id' or 'Class', both of which are typedefs for
  // pointer types.  This looks for the typedef specifically, not for the
  // underlying type.
  if (Ty == getObjCIdType() || Ty == getObjCClassType())
    return true;
  
  // If this a pointer to an interface (e.g. NSString*), it is ok.
  return Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType();
}

//===----------------------------------------------------------------------===//
//                        Type Compatibility Testing
//===----------------------------------------------------------------------===//

/// typesAreBlockCompatible - This routine is called when comparing two
/// block types. Types must be strictly compatible here. For example,
/// C unfortunately doesn't produce an error for the following:
/// 
///   int (*emptyArgFunc)();
///   int (*intArgList)(int) = emptyArgFunc;
/// 
/// For blocks, we will produce an error for the following (similar to C++):
///
///   int (^emptyArgBlock)();
///   int (^intArgBlock)(int) = emptyArgBlock;
///
/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
///
bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
  const FunctionType *lbase = lhs->getAsFunctionType();
  const FunctionType *rbase = rhs->getAsFunctionType();
  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
  if (lproto && rproto)
    return !mergeTypes(lhs, rhs).isNull();
  return false;
}

/// areCompatVectorTypes - Return true if the two specified vector types are 
/// compatible.
static bool areCompatVectorTypes(const VectorType *LHS,
                                 const VectorType *RHS) {
  assert(LHS->isCanonical() && RHS->isCanonical());
  return LHS->getElementType() == RHS->getElementType() &&
         LHS->getNumElements() == RHS->getNumElements();
}

/// canAssignObjCInterfaces - Return true if the two interface types are
/// compatible for assignment from RHS to LHS.  This handles validation of any
/// protocol qualifiers on the LHS or RHS.
///
bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
                                         const ObjCInterfaceType *RHS) {
  // Verify that the base decls are compatible: the RHS must be a subclass of
  // the LHS.
  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
    return false;
  
  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
  // protocol qualified at all, then we are good.
  if (!isa<ObjCQualifiedInterfaceType>(LHS))
    return true;
  
  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
  // isn't a superset.
  if (!isa<ObjCQualifiedInterfaceType>(RHS))
    return true;  // FIXME: should return false!
  
  // Finally, we must have two protocol-qualified interfaces.
  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
  ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
  ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
  ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
  ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
  
  // All protocols in LHS must have a presence in RHS.  Since the protocol lists
  // are both sorted alphabetically and have no duplicates, we can scan RHS and
  // LHS in a single parallel scan until we run out of elements in LHS.
  assert(LHSPI != LHSPE && "Empty LHS protocol list?");
  ObjCProtocolDecl *LHSProto = *LHSPI;
  
  while (RHSPI != RHSPE) {
    ObjCProtocolDecl *RHSProto = *RHSPI++;
    // If the RHS has a protocol that the LHS doesn't, ignore it.
    if (RHSProto != LHSProto)
      continue;
    
    // Otherwise, the RHS does have this element.
    ++LHSPI;
    if (LHSPI == LHSPE)
      return true;  // All protocols in LHS exist in RHS.
    
    LHSProto = *LHSPI;
  }
  
  // If we got here, we didn't find one of the LHS's protocols in the RHS list.
  return false;
}

/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the 
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
  return !mergeTypes(LHS, RHS).isNull();
}

QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
  const FunctionType *lbase = lhs->getAsFunctionType();
  const FunctionType *rbase = rhs->getAsFunctionType();
  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
  bool allLTypes = true;
  bool allRTypes = true;

  // Check return type
  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
  if (retType.isNull()) return QualType();
  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
    allLTypes = false;
  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
    allRTypes = false;

  if (lproto && rproto) { // two C99 style function prototypes
    unsigned lproto_nargs = lproto->getNumArgs();
    unsigned rproto_nargs = rproto->getNumArgs();

    // Compatible functions must have the same number of arguments
    if (lproto_nargs != rproto_nargs)
      return QualType();

    // Variadic and non-variadic functions aren't compatible
    if (lproto->isVariadic() != rproto->isVariadic())
      return QualType();

    if (lproto->getTypeQuals() != rproto->getTypeQuals())
      return QualType();

    // Check argument compatibility
    llvm::SmallVector<QualType, 10> types;
    for (unsigned i = 0; i < lproto_nargs; i++) {
      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
      QualType argtype = mergeTypes(largtype, rargtype);
      if (argtype.isNull()) return QualType();
      types.push_back(argtype);
      if (getCanonicalType(argtype) != getCanonicalType(largtype))
        allLTypes = false;
      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
        allRTypes = false;
    }
    if (allLTypes) return lhs;
    if (allRTypes) return rhs;
    return getFunctionType(retType, types.begin(), types.size(),
                           lproto->isVariadic(), lproto->getTypeQuals());
  }

  if (lproto) allRTypes = false;
  if (rproto) allLTypes = false;

  const FunctionTypeProto *proto = lproto ? lproto : rproto;
  if (proto) {
    if (proto->isVariadic()) return QualType();
    // Check that the types are compatible with the types that
    // would result from default argument promotions (C99 6.7.5.3p15).
    // The only types actually affected are promotable integer
    // types and floats, which would be passed as a different
    // type depending on whether the prototype is visible.
    unsigned proto_nargs = proto->getNumArgs();
    for (unsigned i = 0; i < proto_nargs; ++i) {
      QualType argTy = proto->getArgType(i);
      if (argTy->isPromotableIntegerType() ||
          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
        return QualType();
    }

    if (allLTypes) return lhs;
    if (allRTypes) return rhs;
    return getFunctionType(retType, proto->arg_type_begin(),
                           proto->getNumArgs(), lproto->isVariadic(),
                           lproto->getTypeQuals());
  }

  if (allLTypes) return lhs;
  if (allRTypes) return rhs;
  return getFunctionTypeNoProto(retType);
}

QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
  // C++ [expr]: If an expression initially has the type "reference to T", the
  // type is adjusted to "T" prior to any further analysis, the expression
  // designates the object or function denoted by the reference, and the
  // expression is an lvalue.
  // FIXME: C++ shouldn't be going through here!  The rules are different
  // enough that they should be handled separately.
  if (const ReferenceType *RT = LHS->getAsReferenceType())
    LHS = RT->getPointeeType();
  if (const ReferenceType *RT = RHS->getAsReferenceType())
    RHS = RT->getPointeeType();

  QualType LHSCan = getCanonicalType(LHS),
           RHSCan = getCanonicalType(RHS);

  // If two types are identical, they are compatible.
  if (LHSCan == RHSCan)
    return LHS;

  // If the qualifiers are different, the types aren't compatible
  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers() ||
      LHSCan.getAddressSpace() != RHSCan.getAddressSpace())
    return QualType();

  Type::TypeClass LHSClass = LHSCan->getTypeClass();
  Type::TypeClass RHSClass = RHSCan->getTypeClass();

  // We want to consider the two function types to be the same for these
  // comparisons, just force one to the other.
  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;

  // Same as above for arrays
  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
    LHSClass = Type::ConstantArray;
  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
    RHSClass = Type::ConstantArray;
  
  // Canonicalize ExtVector -> Vector.
  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
  
  // Consider qualified interfaces and interfaces the same.
  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;

  // If the canonical type classes don't match.
  if (LHSClass != RHSClass) {
    // ID is compatible with all qualified id types.
    if (LHS->isObjCQualifiedIdType()) {
      if (const PointerType *PT = RHS->getAsPointerType()) {
        QualType pType = PT->getPointeeType();
        if (isObjCIdType(pType))
          return LHS;
        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
        // Unfortunately, this API is part of Sema (which we don't have access
        // to. Need to refactor. The following check is insufficient, since we 
        // need to make sure the class implements the protocol.
        if (pType->isObjCInterfaceType())
          return LHS;
      }
    }
    if (RHS->isObjCQualifiedIdType()) {
      if (const PointerType *PT = LHS->getAsPointerType()) {
        QualType pType = PT->getPointeeType();
        if (isObjCIdType(pType))
          return RHS;
        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
        // Unfortunately, this API is part of Sema (which we don't have access
        // to. Need to refactor. The following check is insufficient, since we 
        // need to make sure the class implements the protocol.
        if (pType->isObjCInterfaceType())
          return RHS;
      }
    }
    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
    // a signed integer type, or an unsigned integer type. 
    if (const EnumType* ETy = LHS->getAsEnumType()) {
      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
        return RHS;
    }
    if (const EnumType* ETy = RHS->getAsEnumType()) {
      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
        return LHS;
    }

    return QualType();
  }

  // The canonical type classes match.
  switch (LHSClass) {
  case Type::Pointer:
  {
    // Merge two pointer types, while trying to preserve typedef info
    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
    if (ResultType.isNull()) return QualType();
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
      return LHS;
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
      return RHS;
    return getPointerType(ResultType);
  }
  case Type::BlockPointer:
  {
    // Merge two block pointer types, while trying to preserve typedef info
    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
    if (ResultType.isNull()) return QualType();
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
      return LHS;
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
      return RHS;
    return getBlockPointerType(ResultType);
  }
  case Type::ConstantArray:
  {
    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
      return QualType();

    QualType LHSElem = getAsArrayType(LHS)->getElementType();
    QualType RHSElem = getAsArrayType(RHS)->getElementType();
    QualType ResultType = mergeTypes(LHSElem, RHSElem);
    if (ResultType.isNull()) return QualType();
    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
      return LHS;
    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
      return RHS;
    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
                                          ArrayType::ArraySizeModifier(), 0);
    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
                                          ArrayType::ArraySizeModifier(), 0);
    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
      return LHS;
    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
      return RHS;
    if (LVAT) {
      // FIXME: This isn't correct! But tricky to implement because
      // the array's size has to be the size of LHS, but the type
      // has to be different.
      return LHS;
    }
    if (RVAT) {
      // FIXME: This isn't correct! But tricky to implement because
      // the array's size has to be the size of RHS, but the type
      // has to be different.
      return RHS;
    }
    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
  }
  case Type::FunctionNoProto:
    return mergeFunctionTypes(LHS, RHS);
  case Type::Tagged:
    // FIXME: Why are these compatible?
    if (isObjCIdType(LHS) && isObjCClassType(RHS)) return LHS;
    if (isObjCClassType(LHS) && isObjCIdType(RHS)) return LHS;
    return QualType();
  case Type::Builtin:
    // Only exactly equal builtin types are compatible, which is tested above.
    return QualType();
  case Type::Vector:
    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
      return LHS;
    return QualType();
  case Type::ObjCInterface:
    // Distinct ObjC interfaces are not compatible; see canAssignObjCInterfaces
    // for checking assignment/comparison safety
    return QualType();
  case Type::ObjCQualifiedId:
    // Distinct qualified id's are not compatible.
    return QualType();
  default:
    assert(0 && "unexpected type");
    return QualType();
  }
}

//===----------------------------------------------------------------------===//
//                         Integer Predicates
//===----------------------------------------------------------------------===//
unsigned ASTContext::getIntWidth(QualType T) {
  if (T == BoolTy)
    return 1;
  // At the moment, only bool has padding bits
  return (unsigned)getTypeSize(T);
}

QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
  assert(T->isSignedIntegerType() && "Unexpected type");
  if (const EnumType* ETy = T->getAsEnumType())
    T = ETy->getDecl()->getIntegerType();
  const BuiltinType* BTy = T->getAsBuiltinType();
  assert (BTy && "Unexpected signed integer type");
  switch (BTy->getKind()) {
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    return UnsignedCharTy;
  case BuiltinType::Short:
    return UnsignedShortTy;
  case BuiltinType::Int:
    return UnsignedIntTy;
  case BuiltinType::Long:
    return UnsignedLongTy;
  case BuiltinType::LongLong:
    return UnsignedLongLongTy;
  default:
    assert(0 && "Unexpected signed integer type");
    return QualType();
  }
}


//===----------------------------------------------------------------------===//
//                         Serialization Support
//===----------------------------------------------------------------------===//

/// Emit - Serialize an ASTContext object to Bitcode.
void ASTContext::Emit(llvm::Serializer& S) const {
  S.Emit(LangOpts);
  S.EmitRef(SourceMgr);
  S.EmitRef(Target);
  S.EmitRef(Idents);
  S.EmitRef(Selectors);

  // Emit the size of the type vector so that we can reserve that size
  // when we reconstitute the ASTContext object.
  S.EmitInt(Types.size());
  
  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end(); 
                                          I!=E;++I)    
    (*I)->Emit(S);

  S.EmitOwnedPtr(TUDecl);

  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
}

ASTContext* ASTContext::Create(llvm::Deserializer& D) {
  
  // Read the language options.
  LangOptions LOpts;
  LOpts.Read(D);
  
  SourceManager &SM = D.ReadRef<SourceManager>();
  TargetInfo &t = D.ReadRef<TargetInfo>();
  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
  SelectorTable &sels = D.ReadRef<SelectorTable>();

  unsigned size_reserve = D.ReadInt();
  
  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
                                 size_reserve);
  
  for (unsigned i = 0; i < size_reserve; ++i)
    Type::Create(*A,i,D);
  
  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));

  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
  
  return A;
}
OpenPOWER on IntegriCloud