summaryrefslogtreecommitdiffstats
path: root/clang/Lex/MacroExpander.cpp
blob: 0564cbe2a6e063a440af473bae0fe8e61c4e7d43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
//===--- MacroExpander.cpp - Lex from a macro expansion -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MacroExpander interface.
//
//===----------------------------------------------------------------------===//

#include "clang/Lex/MacroExpander.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Diagnostic.h"
using namespace llvm;
using namespace clang;

//===----------------------------------------------------------------------===//
// MacroArgs Implementation
//===----------------------------------------------------------------------===//

MacroArgs::MacroArgs(const MacroInfo *MI) {
  assert(MI->isFunctionLike() &&
         "Can't have args for an object-like macro!");
  // Reserve space for arguments to avoid reallocation.
  unsigned NumArgs = MI->getNumArgs();
  if (MI->isC99Varargs() || MI->isGNUVarargs())
    NumArgs += 3;    // Varargs can have more than this, just some guess.
  
  UnexpArgTokens.reserve(NumArgs);
}

/// addArgument - Add an argument for this invocation.  This method destroys
/// the vector passed in to avoid extraneous memory copies.  This adds the EOF
/// token to the end of the argument list as a marker.  'Loc' specifies a
/// location at the end of the argument, e.g. the ',' token or the ')'.
void MacroArgs::addArgument(std::vector<LexerToken> &ArgToks,
                            SourceLocation Loc) {
  UnexpArgTokens.push_back(std::vector<LexerToken>());
  UnexpArgTokens.back().swap(ArgToks);
  
  // Add a marker EOF token to the end of the argument list, useful for handling
  // empty arguments and macro pre-expansion.
  LexerToken EOFTok;
  EOFTok.StartToken();
  EOFTok.SetKind(tok::eof);
  EOFTok.SetLocation(Loc);
  EOFTok.SetLength(0);
  UnexpArgTokens.back().push_back(EOFTok);
}

/// ArgNeedsPreexpansion - If we can prove that the argument won't be affected
/// by pre-expansion, return false.  Otherwise, conservatively return true.
bool MacroArgs::ArgNeedsPreexpansion(unsigned ArgNo) const {
  const std::vector<LexerToken> &ArgTokens = getUnexpArgument(ArgNo);
  
  // If there are no identifiers in the argument list, or if the identifiers are
  // known to not be macros, pre-expansion won't modify it.
  for (unsigned i = 0, e = ArgTokens.size()-1; i != e; ++i)
    if (IdentifierInfo *II = ArgTokens[i].getIdentifierInfo()) {
      if (II->getMacroInfo() && II->getMacroInfo()->isEnabled())
        // Return true even though the macro could be a function-like macro
        // without a following '(' token.
        return true;
    }
  return false;
}

/// getPreExpArgument - Return the pre-expanded form of the specified
/// argument.
const std::vector<LexerToken> &
MacroArgs::getPreExpArgument(unsigned Arg, Preprocessor &PP) {
  assert(Arg < UnexpArgTokens.size() && "Invalid argument number!");
  
  // If we have already computed this, return it.
  if (PreExpArgTokens.empty())
    PreExpArgTokens.resize(UnexpArgTokens.size());

  std::vector<LexerToken> &Result = PreExpArgTokens[Arg];
  if (!Result.empty()) return Result;

  // Otherwise, we have to pre-expand this argument, populating Result.  To do
  // this, we set up a fake MacroExpander to lex from the unexpanded argument
  // list.  With this installed, we lex expanded tokens until we hit the EOF
  // token at the end of the unexp list.
  PP.EnterTokenStream(UnexpArgTokens[Arg]);

  // Lex all of the macro-expanded tokens into Result.
  do {
    Result.push_back(LexerToken());
    PP.Lex(Result.back());
  } while (Result.back().getKind() != tok::eof);
  
  // Pop the token stream off the top of the stack.  We know that the internal
  // pointer inside of it is to the "end" of the token stream, but the stack
  // will not otherwise be popped until the next token is lexed.  The problem is
  // that the token may be lexed sometime after the vector of tokens itself is
  // destroyed, which would be badness.
  PP.RemoveTopOfLexerStack();
  return Result;
}


/// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of
/// tokens into the literal string token that should be produced by the C #
/// preprocessor operator.
///
static LexerToken StringifyArgument(const std::vector<LexerToken> &Toks,
                                    Preprocessor &PP, bool Charify = false) {
  LexerToken Tok;
  Tok.StartToken();
  Tok.SetKind(tok::string_literal);

  // Stringify all the tokens.
  std::string Result = "\"";
  // FIXME: Optimize this loop to not use std::strings.
  for (unsigned i = 0, e = Toks.size()-1 /*no eof*/; i != e; ++i) {
    const LexerToken &Tok = Toks[i];
    if (i != 0 && Tok.hasLeadingSpace())
      Result += ' ';
    
    // If this is a string or character constant, escape the token as specified
    // by 6.10.3.2p2.
    if (Tok.getKind() == tok::string_literal ||  // "foo" and L"foo".
        Tok.getKind() == tok::char_constant) {   // 'x' and L'x'.
      Result += Lexer::Stringify(PP.getSpelling(Tok));
    } else {
      // Otherwise, just append the token.
      Result += PP.getSpelling(Tok);
    }
  }
  
  // If the last character of the string is a \, and if it isn't escaped, this
  // is an invalid string literal, diagnose it as specified in C99.
  if (Result[Result.size()-1] == '\\') {
    // Count the number of consequtive \ characters.  If even, then they are
    // just escaped backslashes, otherwise it's an error.
    unsigned FirstNonSlash = Result.size()-2;
    // Guaranteed to find the starting " if nothing else.
    while (Result[FirstNonSlash] == '\\')
      --FirstNonSlash;
    if ((Result.size()-1-FirstNonSlash) & 1) {
      // Diagnose errors for things like: #define F(X) #X   /   F(\)
      PP.Diag(Toks.back(), diag::pp_invalid_string_literal);
      Result.erase(Result.end()-1);  // remove one of the \'s.
    }
  }
  Result += '"';
  
  // If this is the charify operation and the result is not a legal character
  // constant, diagnose it.
  if (Charify) {
    // First step, turn double quotes into single quotes:
    Result[0] = '\'';
    Result[Result.size()-1] = '\'';
    
    // Check for bogus character.
    bool isBad = false;
    if (Result.size() == 3) {
      isBad = Result[1] == '\'';   // ''' is not legal. '\' already fixed above.
    } else {
      isBad = (Result.size() != 4 || Result[1] != '\\');  // Not '\x'
    }
    
    if (isBad) {
      assert(!Toks.empty() && "No eof token at least?");
      PP.Diag(Toks[0], diag::err_invalid_character_to_charify);
      Result = "' '";  // Use something arbitrary, but legal.
    }
  }
  
  Tok.SetLength(Result.size());
  Tok.SetLocation(PP.CreateString(&Result[0], Result.size()));
  return Tok;
}

/// getStringifiedArgument - Compute, cache, and return the specified argument
/// that has been 'stringified' as required by the # operator.
const LexerToken &MacroArgs::getStringifiedArgument(unsigned ArgNo,
                                                    Preprocessor &PP) {
  assert(ArgNo < UnexpArgTokens.size() && "Invalid argument number!");
  if (StringifiedArgs.empty()) {
    StringifiedArgs.resize(getNumArguments());
    memset(&StringifiedArgs[0], 0,
           sizeof(StringifiedArgs[0])*getNumArguments());
  }
  if (StringifiedArgs[ArgNo].getKind() != tok::string_literal)
    StringifiedArgs[ArgNo] = StringifyArgument(UnexpArgTokens[ArgNo], PP);
  return StringifiedArgs[ArgNo];
}

//===----------------------------------------------------------------------===//
// MacroExpander Implementation
//===----------------------------------------------------------------------===//

/// Create a macro expander for the specified macro with the specified actual
/// arguments.  Note that this ctor takes ownership of the ActualArgs pointer.
MacroExpander::MacroExpander(LexerToken &Tok, MacroArgs *Actuals,
                             Preprocessor &pp)
  : Macro(Tok.getIdentifierInfo()->getMacroInfo()),
    ActualArgs(Actuals), PP(pp), CurToken(0),
    InstantiateLoc(Tok.getLocation()),
    AtStartOfLine(Tok.isAtStartOfLine()),
    HasLeadingSpace(Tok.hasLeadingSpace()) {
  MacroTokens = &Macro->getReplacementTokens();

  // If this is a function-like macro, expand the arguments and change
  // MacroTokens to point to the expanded tokens.
  if (Macro->isFunctionLike() && Macro->getNumArgs())
    ExpandFunctionArguments();
  
  // Mark the macro as currently disabled, so that it is not recursively
  // expanded.  The macro must be disabled only after argument pre-expansion of
  // function-like macro arguments occurs.
  Macro->DisableMacro();
}

/// Create a macro expander for the specified token stream.  This does not
/// take ownership of the specified token vector.
MacroExpander::MacroExpander(const std::vector<LexerToken> &TokStream, 
                             Preprocessor &pp)
  : Macro(0), ActualArgs(0), PP(pp), MacroTokens(&TokStream), CurToken(0),
    InstantiateLoc(SourceLocation()), AtStartOfLine(false), 
    HasLeadingSpace(false) {
      
  // Set HasLeadingSpace/AtStartOfLine so that the first token will be
  // returned unmodified.
  if (!TokStream.empty()) {
    AtStartOfLine   = TokStream[0].isAtStartOfLine();
    HasLeadingSpace = TokStream[0].hasLeadingSpace();
  }
}


MacroExpander::~MacroExpander() {
  // If this was a function-like macro that actually uses its arguments, delete
  // the expanded tokens.
  if (Macro && MacroTokens != &Macro->getReplacementTokens())
    delete MacroTokens;
  
  // MacroExpander owns its formal arguments.
  delete ActualArgs;
}

/// Expand the arguments of a function-like macro so that we can quickly
/// return preexpanded tokens from MacroTokens.
void MacroExpander::ExpandFunctionArguments() {
  std::vector<LexerToken> ResultToks;
  
  // Loop through the MacroTokens tokens, expanding them into ResultToks.  Keep
  // track of whether we change anything.  If not, no need to keep them.  If so,
  // we install the newly expanded sequence as MacroTokens.
  bool MadeChange = false;
  for (unsigned i = 0, e = MacroTokens->size(); i != e; ++i) {
    // If we found the stringify operator, get the argument stringified.  The
    // preprocessor already verified that the following token is a macro name
    // when the #define was parsed.
    const LexerToken &CurTok = (*MacroTokens)[i];
    if (CurTok.getKind() == tok::hash || CurTok.getKind() == tok::hashat) {
      int ArgNo =Macro->getArgumentNum((*MacroTokens)[i+1].getIdentifierInfo());
      assert(ArgNo != -1 && "Token following # is not an argument?");
      
      if (CurTok.getKind() == tok::hash)  // Stringify
        ResultToks.push_back(ActualArgs->getStringifiedArgument(ArgNo, PP));
      else {
        // 'charify': don't bother caching these.
        ResultToks.push_back(StringifyArgument(
                               ActualArgs->getUnexpArgument(ArgNo), PP, true));
      }
      
      // The stringified/charified string leading space flag gets set to match
      // the #/#@ operator.
      if (CurTok.hasLeadingSpace())
        ResultToks.back().SetFlag(LexerToken::LeadingSpace);
      
      MadeChange = true;
      ++i;  // Skip arg name.
    } else {
      // Otherwise, if this is not an argument token, just add the token to the
      // output buffer.
      IdentifierInfo *II = CurTok.getIdentifierInfo();
      int ArgNo = II ? Macro->getArgumentNum(II) : -1;
      if (ArgNo == -1) {
        ResultToks.push_back(CurTok);
        continue;
      }
      
      // An argument is expanded somehow, the result is different than the
      // input.
      MadeChange = true;

      // Otherwise, this is a use of the argument.  Find out if there is a paste
      // (##) operator before or after the argument.
      bool PasteBefore = 
        !ResultToks.empty() && ResultToks.back().getKind() == tok::hashhash;
      bool PasteAfter =
        i+1 != e && (*MacroTokens)[i+1].getKind() == tok::hashhash;
      
      // If it is not the LHS/RHS of a ## operator, we must pre-expand the
      // argument and substitute the expanded tokens into the result.  This is
      // C99 6.10.3.1p1.
      if (!PasteBefore && !PasteAfter) {
        const std::vector<LexerToken> *ArgToks;
        // Only preexpand the argument if it could possibly need it.  This
        // avoids some work in common cases.
        if (ActualArgs->ArgNeedsPreexpansion(ArgNo))
          ArgToks = &ActualArgs->getPreExpArgument(ArgNo, PP);
        else
          ArgToks = &ActualArgs->getUnexpArgument(ArgNo);
        
        unsigned FirstTok = ResultToks.size();
        ResultToks.insert(ResultToks.end(), ArgToks->begin(), ArgToks->end()-1);
        
        // If any tokens were substituted from the argument, the whitespace
        // before the first token should match the whitespace of the arg
        // identifier.
        if (FirstTok != ResultToks.size())
          ResultToks[FirstTok].SetFlagValue(LexerToken::LeadingSpace,
                                            CurTok.hasLeadingSpace());
        continue;
      }
      
      // Okay, we have a token that is either the LHS or RHS of a paste (##)
      // argument.  It gets substituted as its non-pre-expanded tokens.
      const std::vector<LexerToken> &ArgToks =
        ActualArgs->getUnexpArgument(ArgNo);
      assert(ArgToks.back().getKind() == tok::eof && "Bad argument!");

      if (ArgToks.size() != 1) {  // Not just an EOF token?
        ResultToks.insert(ResultToks.end(), ArgToks.begin(), ArgToks.end()-1);
        continue;
      }
      
      // FIXME: Handle comma swallowing GNU extension.
      // FIXME: Handle 'placemarker' stuff.
      assert(0 && "FIXME: handle empty arguments!");
      //ResultToks.push_back(CurTok);
    }
  }
  
  // If anything changed, install this as the new MacroTokens list.
  if (MadeChange) {
    // This is deleted in the dtor.
    std::vector<LexerToken> *Res = new std::vector<LexerToken>();
    Res->swap(ResultToks);
    MacroTokens = Res;
  }
}

/// Lex - Lex and return a token from this macro stream.
///
void MacroExpander::Lex(LexerToken &Tok) {
  // Lexing off the end of the macro, pop this macro off the expansion stack.
  if (isAtEnd()) {
    // If this is a macro (not a token stream), mark the macro enabled now
    // that it is no longer being expanded.
    if (Macro) Macro->EnableMacro();

    // Pop this context off the preprocessors lexer stack and get the next
    // token.  This will delete "this" so remember the PP instance var.
    Preprocessor &PPCache = PP;
    if (PP.HandleEndOfMacro(Tok))
      return;

    // HandleEndOfMacro may not return a token.  If it doesn't, lex whatever is
    // next.
    return PPCache.Lex(Tok);
  }
  
  // Get the next token to return.
  Tok = (*MacroTokens)[CurToken++];

  // The token's current location indicate where the token was lexed from.  We
  // need this information to compute the spelling of the token, but any
  // diagnostics for the expanded token should appear as if they came from
  // InstantiationLoc.  Pull this information together into a new SourceLocation
  // that captures all of this.
  if (InstantiateLoc.isValid()) {   // Don't do this for token streams.
    SourceManager &SrcMgr = PP.getSourceManager();
    // The token could have come from a prior macro expansion.  In that case,
    // ignore the macro expand part to get to the physloc.  This happens for
    // stuff like:  #define A(X) X    A(A(X))    A(1)
    SourceLocation PhysLoc = SrcMgr.getPhysicalLoc(Tok.getLocation());
    Tok.SetLocation(SrcMgr.getInstantiationLoc(PhysLoc, InstantiateLoc));
  }
  
  // If this is the first token, set the lexical properties of the token to
  // match the lexical properties of the macro identifier.
  if (CurToken == 1) {
    Tok.SetFlagValue(LexerToken::StartOfLine , AtStartOfLine);
    Tok.SetFlagValue(LexerToken::LeadingSpace, HasLeadingSpace);
  }
  
  // Handle recursive expansion!
  if (Tok.getIdentifierInfo())
    return PP.HandleIdentifier(Tok);

  // Otherwise, return a normal token.
}

/// isNextTokenLParen - If the next token lexed will pop this macro off the
/// expansion stack, return 2.  If the next unexpanded token is a '(', return
/// 1, otherwise return 0.
unsigned MacroExpander::isNextTokenLParen() const {
  // Out of tokens?
  if (isAtEnd())
    return 2;
  return (*MacroTokens)[CurToken].getKind() == tok::l_paren;
}
OpenPOWER on IntegriCloud