1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
using namespace clang;
using namespace CodeGen;
//===--------------------------------------------------------------------===//
// Miscellaneous Helper Methods
//===--------------------------------------------------------------------===//
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
QualType Ty;
RValue Val = EmitExprWithUsualUnaryConversions(E, Ty);
return ConvertScalarValueToBool(Val, Ty);
}
//===--------------------------------------------------------------------===//
// Conversions
//===--------------------------------------------------------------------===//
/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
/// the type specified by DstTy, following the rules of C99 6.3.
RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
QualType DstTy) {
ValTy = ValTy.getCanonicalType();
DstTy = DstTy.getCanonicalType();
if (ValTy == DstTy) return Val;
// Handle conversions to bool first, they are special: comparisons against 0.
if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
if (DestBT->getKind() == BuiltinType::Bool)
return RValue::get(ConvertScalarValueToBool(Val, ValTy));
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<PointerType>(DstTy)) {
const llvm::Type *DestTy = ConvertType(DstTy);
// The source value may be an integer, or a pointer.
assert(Val.isScalar() && "Can only convert from integer or pointer");
if (isa<llvm::PointerType>(Val.getVal()->getType()))
return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
return RValue::get(Builder.CreatePtrToInt(Val.getVal(), DestTy, "conv"));
}
if (isa<PointerType>(ValTy)) {
// Must be an ptr to int cast.
const llvm::Type *DestTy = ConvertType(DstTy);
assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
}
// Finally, we have the arithmetic types: real int/float and complex
// int/float. Handle real->real conversions first, they are the most
// common.
if (Val.isScalar() && DstTy->isRealType()) {
// We know that these are representable as scalars in LLVM, convert to LLVM
// types since they are easier to reason about.
llvm::Value *SrcVal = Val.getVal();
const llvm::Type *DestTy = ConvertType(DstTy);
if (SrcVal->getType() == DestTy) return Val;
llvm::Value *Result;
if (isa<llvm::IntegerType>(SrcVal->getType())) {
bool InputSigned = ValTy->isSignedIntegerType();
if (isa<llvm::IntegerType>(DestTy))
Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
else if (InputSigned)
Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
else
Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
} else {
assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(DestTy)) {
if (DstTy->isSignedIntegerType())
Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
else
Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
} else {
assert(DestTy->isFloatingPoint() && "Unknown real conversion");
if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
else
Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
}
}
return RValue::get(Result);
}
assert(0 && "FIXME: We don't support complex conversions yet!");
}
/// ConvertScalarValueToBool - Convert the specified expression value to a
/// boolean (i1) truth value. This is equivalent to "Val == 0".
llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){
Ty = Ty.getCanonicalType();
llvm::Value *Result;
if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
switch (BT->getKind()) {
default: assert(0 && "Unknown scalar value");
case BuiltinType::Bool:
Result = Val.getVal();
// Bool is already evaluated right.
assert(Result->getType() == llvm::Type::Int1Ty &&
"Unexpected bool value type!");
return Result;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
// Code below handles simple integers.
break;
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble: {
// Compare against 0.0 for fp scalars.
Result = Val.getVal();
llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
// FIXME: llvm-gcc produces a une comparison: validate this is right.
Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
return Result;
}
case BuiltinType::FloatComplex:
case BuiltinType::DoubleComplex:
case BuiltinType::LongDoubleComplex:
assert(0 && "comparisons against complex not implemented yet");
}
} else {
assert((isa<PointerType>(Ty) ||
cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) &&
"Unknown scalar type");
// Code below handles this fine.
}
// Usual case for integers, pointers, and enums: compare against zero.
Result = Val.getVal();
// Because of the type rules of C, we often end up computing a logical value,
// then zero extending it to int, then wanting it as a logical value again.
// Optimize this common case.
if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) {
if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
Result = ZI->getOperand(0);
ZI->eraseFromParent();
return Result;
}
}
llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
return Builder.CreateICmpNE(Result, Zero, "tobool");
}
//===----------------------------------------------------------------------===//
// LValue Expression Emission
//===----------------------------------------------------------------------===//
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue CodeGenFunction::EmitLValue(const Expr *E) {
switch (E->getStmtClass()) {
default:
fprintf(stderr, "Unimplemented lvalue expr!\n");
E->dump();
return LValue::getAddr(llvm::UndefValue::get(
llvm::PointerType::get(llvm::Type::Int32Ty)));
case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
case Expr::StringLiteralClass:
return EmitStringLiteralLValue(cast<StringLiteral>(E));
case Expr::UnaryOperatorClass:
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
case Expr::ArraySubscriptExprClass:
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
}
}
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
LValue LV = EmitLValue(E);
QualType ExprTy = E->getType().getCanonicalType();
// FIXME: this is silly and obviously wrong for non-scalars.
assert(!LV.isBitfield());
llvm::Value *Ptr = LV.getAddress();
const llvm::Type *EltTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
// Simple scalar l-value.
if (EltTy->isFirstClassType())
return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
// Otherwise, we have an aggregate lvalue.
return RValue::getAggregate(Ptr);
}
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
QualType Ty) {
assert(!Dst.isBitfield() && "FIXME: Don't support store to bitfield yet");
llvm::Value *DstAddr = Dst.getAddress();
if (Src.isScalar()) {
// FIXME: Handle volatility etc.
const llvm::Type *SrcTy = Src.getVal()->getType();
const llvm::Type *AddrTy =
cast<llvm::PointerType>(DstAddr->getType())->getElementType();
if (AddrTy != SrcTy)
DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
"storetmp");
Builder.CreateStore(Src.getVal(), DstAddr);
return;
}
// Aggregate assignment turns into llvm.memcpy.
const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty);
llvm::Value *SrcAddr = Src.getAggregateAddr();
if (DstAddr->getType() != SBP)
DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp");
if (SrcAddr->getType() != SBP)
SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp");
unsigned Align = 1; // FIXME: Compute type alignments.
unsigned Size = 1234; // FIXME: Compute type sizes.
// FIXME: Handle variable sized types.
const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size);
llvm::Value *MemCpyOps[4] = {
DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align)
};
Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, 4);
}
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
const Decl *D = E->getDecl();
if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
llvm::Value *V = LocalDeclMap[D];
assert(V && "BlockVarDecl not entered in LocalDeclMap?");
return LValue::getAddr(V);
} else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
return LValue::getAddr(CGM.GetAddrOfGlobalDecl(D));
}
assert(0 && "Unimp declref");
}
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
// __extension__ doesn't affect lvalue-ness.
if (E->getOpcode() == UnaryOperator::Extension)
return EmitLValue(E->getSubExpr());
assert(E->getOpcode() == UnaryOperator::Deref &&
"'*' is the only unary operator that produces an lvalue");
return LValue::getAddr(EmitExpr(E->getSubExpr()).getVal());
}
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
const char *StrData = E->getStrData();
unsigned Len = E->getByteLength();
// FIXME: Can cache/reuse these within the module.
llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
// Create a global variable for this.
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, ".str", CurFn->getParent());
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
return LValue::getAddr(C);
}
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
// The base and index must be pointers or integers, neither of which are
// aggregates. Emit them.
QualType BaseTy;
llvm::Value *Base =
EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
QualType IdxTy;
llvm::Value *Idx =
EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
// Usually the base is the pointer type, but sometimes it is the index.
// Canonicalize to have the pointer as the base.
if (isa<llvm::PointerType>(Idx->getType())) {
std::swap(Base, Idx);
std::swap(BaseTy, IdxTy);
}
// The pointer is now the base. Extend or truncate the index type to 32 or
// 64-bits.
bool IdxSigned = IdxTy->isSignedIntegerType();
unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
if (IdxBitwidth != LLVMPointerWidth)
Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
IdxSigned, "idxprom");
// We know that the pointer points to a type of the correct size, unless the
// size is a VLA.
if (!E->getType()->isConstantSizeType())
assert(0 && "VLA idx not implemented");
return LValue::getAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
}
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
RValue CodeGenFunction::EmitExpr(const Expr *E) {
assert(E && "Null expression?");
switch (E->getStmtClass()) {
default:
fprintf(stderr, "Unimplemented expr!\n");
E->dump();
return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
// l-values.
case Expr::DeclRefExprClass:
// DeclRef's of EnumConstantDecl's are simple rvalues.
if (const EnumConstantDecl *EC =
dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
return RValue::get(llvm::ConstantInt::get(EC->getInitVal()));
// FALLTHROUGH
case Expr::ArraySubscriptExprClass:
return EmitLoadOfLValue(E);
case Expr::StringLiteralClass:
return RValue::get(EmitLValue(E).getAddress());
// Leaf expressions.
case Expr::IntegerLiteralClass:
return EmitIntegerLiteral(cast<IntegerLiteral>(E));
// Operators.
case Expr::ParenExprClass:
return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
case Expr::UnaryOperatorClass:
return EmitUnaryOperator(cast<UnaryOperator>(E));
case Expr::CastExprClass:
return EmitCastExpr(cast<CastExpr>(E));
case Expr::CallExprClass:
return EmitCallExpr(cast<CallExpr>(E));
case Expr::BinaryOperatorClass:
return EmitBinaryOperator(cast<BinaryOperator>(E));
}
}
RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
return RValue::get(llvm::ConstantInt::get(E->getValue()));
}
RValue CodeGenFunction::EmitCastExpr(const CastExpr *E) {
QualType SrcTy;
RValue Src = EmitExprWithUsualUnaryConversions(E->getSubExpr(), SrcTy);
// If the destination is void, just evaluate the source.
if (E->getType()->isVoidType())
return RValue::getAggregate(0);
return EmitConversion(Src, SrcTy, E->getType());
}
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
QualType Ty;
llvm::Value *Callee =
EmitExprWithUsualUnaryConversions(E->getCallee(), Ty).getVal();
llvm::SmallVector<llvm::Value*, 16> Args;
// FIXME: Handle struct return.
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
RValue ArgVal = EmitExprWithUsualUnaryConversions(E->getArg(i), Ty);
if (ArgVal.isScalar())
Args.push_back(ArgVal.getVal());
else // Pass by-address. FIXME: Set attribute bit on call.
Args.push_back(ArgVal.getAggregateAddr());
}
llvm::Value *V = Builder.CreateCall(Callee, &Args[0], Args.size());
if (V->getType() != llvm::Type::VoidTy)
V->setName("call");
// FIXME: Struct return;
return RValue::get(V);
}
//===----------------------------------------------------------------------===//
// Unary Operator Emission
//===----------------------------------------------------------------------===//
RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E,
QualType &ResTy) {
ResTy = E->getType().getCanonicalType();
if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4
// Functions are promoted to their address.
ResTy = getContext().getPointerType(ResTy);
return RValue::get(EmitLValue(E).getAddress());
} else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) {
// C99 6.3.2.1p3
ResTy = getContext().getPointerType(ary->getElementType());
// FIXME: For now we assume that all source arrays map to LLVM arrays. This
// will not true when we add support for VLAs.
llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
assert(isa<llvm::PointerType>(V->getType()) &&
isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
->getElementType()) &&
"Doesn't support VLAs yet!");
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
} else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2
// FIXME: this probably isn't right, pending clarification from Steve.
llvm::Value *Val = EmitExpr(E).getVal();
// If the input is a signed integer, sign extend to the destination.
if (ResTy->isSignedIntegerType()) {
Val = Builder.CreateSExt(Val, LLVMIntTy, "promote");
} else {
// This handles unsigned types, including bool.
Val = Builder.CreateZExt(Val, LLVMIntTy, "promote");
}
ResTy = getContext().IntTy;
return RValue::get(Val);
}
// Otherwise, this is a float, double, int, struct, etc.
return EmitExpr(E);
}
RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
switch (E->getOpcode()) {
default:
printf("Unimplemented unary expr!\n");
E->dump();
return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
// FIXME: pre/post inc/dec
case UnaryOperator::AddrOf: return EmitUnaryAddrOf(E);
case UnaryOperator::Deref : return EmitLoadOfLValue(E);
case UnaryOperator::Plus : return EmitUnaryPlus(E);
case UnaryOperator::Minus : return EmitUnaryMinus(E);
case UnaryOperator::Not : return EmitUnaryNot(E);
case UnaryOperator::LNot : return EmitUnaryLNot(E);
// FIXME: SIZEOF/ALIGNOF(expr).
// FIXME: real/imag
case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
}
}
/// C99 6.5.3.2
RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
// The address of the operand is just its lvalue. It cannot be a bitfield.
return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
}
RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
// Unary plus just performs promotions on its arithmetic operand.
QualType Ty;
return EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
}
RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
// Unary minus performs promotions, then negates its arithmetic operand.
QualType Ty;
RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
if (V.isScalar())
return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
// Unary not performs promotions, then complements its integer operand.
QualType Ty;
RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
if (V.isScalar())
return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
}
/// C99 6.5.3.3
RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
// Compare operand to zero.
llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
// Invert value.
// TODO: Could dynamically modify easy computations here. For example, if
// the operand is an icmp ne, turn into icmp eq.
BoolVal = Builder.CreateNot(BoolVal, "lnot");
// ZExt result to int.
return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
}
//===--------------------------------------------------------------------===//
// Binary Operator Emission
//===--------------------------------------------------------------------===//
// FIXME describe.
QualType CodeGenFunction::
EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
RValue &RHS) {
QualType LHSType, RHSType;
LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType);
RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType);
// If both operands have the same source type, we're done already.
if (LHSType == RHSType) return LHSType;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
return LHSType;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
if (LHSType->isComplexType() || RHSType->isComplexType()) {
assert(0 && "FIXME: complex types unimp");
#if 0
// if we have an integer operand, the result is the complex type.
if (rhs->isIntegerType())
return lhs;
if (lhs->isIntegerType())
return rhs;
return Context.maxComplexType(lhs, rhs);
#endif
}
// If neither operand is complex, they must be scalars.
llvm::Value *LHSV = LHS.getVal();
llvm::Value *RHSV = RHS.getVal();
// If the LLVM types are already equal, then they only differed in sign, or it
// was something like char/signed char or double/long double.
if (LHSV->getType() == RHSV->getType())
return LHSType;
// Now handle "real" floating types (i.e. float, double, long double).
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
// if we have an integer operand, the result is the real floating type, and
// the integer converts to FP.
if (RHSType->isIntegerType()) {
// Promote the RHS to an FP type of the LHS, with the sign following the
// RHS.
if (RHSType->isSignedIntegerType())
RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
else
RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
return LHSType;
}
if (LHSType->isIntegerType()) {
// Promote the LHS to an FP type of the RHS, with the sign following the
// LHS.
if (LHSType->isSignedIntegerType())
LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
else
LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
return RHSType;
}
// Otherwise, they are two FP types. Promote the smaller operand to the
// bigger result.
QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
if (BiggerType == LHSType)
RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
else
LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
return BiggerType;
}
// Finally, we have two integer types that are different according to C. Do
// a sign or zero extension if needed.
// Otherwise, one type is smaller than the other.
QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
if (LHSType == ResTy) {
if (RHSType->isSignedIntegerType())
RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
else
RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
} else {
assert(RHSType == ResTy && "Unknown conversion");
if (LHSType->isSignedIntegerType())
LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
else
LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
}
return ResTy;
}
RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
switch (E->getOpcode()) {
default:
fprintf(stderr, "Unimplemented expr!\n");
E->dump();
return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
case BinaryOperator::Mul: return EmitBinaryMul(E);
case BinaryOperator::Div: return EmitBinaryDiv(E);
case BinaryOperator::Rem: return EmitBinaryRem(E);
case BinaryOperator::Add: return EmitBinaryAdd(E);
case BinaryOperator::Sub: return EmitBinarySub(E);
case BinaryOperator::Shl: return EmitBinaryShl(E);
case BinaryOperator::Shr: return EmitBinaryShr(E);
case BinaryOperator::And: return EmitBinaryAnd(E);
case BinaryOperator::Xor: return EmitBinaryXor(E);
case BinaryOperator::Or : return EmitBinaryOr(E);
case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
case BinaryOperator::LOr: return EmitBinaryLOr(E);
case BinaryOperator::LT:
return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT,
llvm::ICmpInst::ICMP_SLT,
llvm::FCmpInst::FCMP_OLT);
case BinaryOperator::GT:
return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT,
llvm::ICmpInst::ICMP_SGT,
llvm::FCmpInst::FCMP_OGT);
case BinaryOperator::LE:
return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE,
llvm::ICmpInst::ICMP_SLE,
llvm::FCmpInst::FCMP_OLE);
case BinaryOperator::GE:
return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE,
llvm::ICmpInst::ICMP_SGE,
llvm::FCmpInst::FCMP_OGE);
case BinaryOperator::EQ:
return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ,
llvm::ICmpInst::ICMP_EQ,
llvm::FCmpInst::FCMP_OEQ);
case BinaryOperator::NE:
return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE,
llvm::ICmpInst::ICMP_NE,
llvm::FCmpInst::FCMP_UNE);
case BinaryOperator::Assign: return EmitBinaryAssign(E);
// FIXME: Assignment.
case BinaryOperator::Comma: return EmitBinaryComma(E);
}
}
RValue CodeGenFunction::EmitBinaryMul(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryDiv(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar()) {
llvm::Value *RV;
if (LHS.getVal()->getType()->isFloatingPoint())
RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
else if (E->getType()->isUnsignedIntegerType())
RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
else
RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
return RValue::get(RV);
}
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryRem(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar()) {
llvm::Value *RV;
// Rem in C can't be a floating point type: C99 6.5.5p2.
if (E->getType()->isUnsignedIntegerType())
RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
else
RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
return RValue::get(RV);
}
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryAdd(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
// FIXME: This doesn't handle ptr+int etc yet.
if (LHS.isScalar())
return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinarySub(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
// FIXME: This doesn't handle ptr-int or ptr-ptr, etc yet.
if (LHS.isScalar())
return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryShl(const BinaryOperator *E) {
// For shifts, integer promotions are performed, but the usual arithmetic
// conversions are not. The LHS and RHS need not have the same type.
QualType ResTy;
llvm::Value *LHS =
EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy).getVal();
llvm::Value *RHS =
EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy).getVal();
// LLVM requires the LHS and RHS to be the same type, promote or truncate the
// RHS to the same size as the LHS.
if (LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
}
RValue CodeGenFunction::EmitBinaryShr(const BinaryOperator *E) {
// For shifts, integer promotions are performed, but the usual arithmetic
// conversions are not. The LHS and RHS need not have the same type.
QualType ResTy;
llvm::Value *LHS =
EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy).getVal();
llvm::Value *RHS =
EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy).getVal();
// LLVM requires the LHS and RHS to be the same type, promote or truncate the
// RHS to the same size as the LHS.
if (LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
if (E->getType()->isUnsignedIntegerType())
return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
else
return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
}
RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E,
unsigned UICmpOpc, unsigned SICmpOpc,
unsigned FCmpOpc) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
llvm::Value *Result;
if (LHS.isScalar()) {
if (LHS.getVal()->getType()->isFloatingPoint()) {
Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
LHS.getVal(), RHS.getVal(), "cmp");
} else if (E->getLHS()->getType()->isUnsignedIntegerType()) {
// FIXME: This check isn't right for "unsigned short < int" where ushort
// promotes to int and does a signed compare.
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
LHS.getVal(), RHS.getVal(), "cmp");
} else {
// Signed integers and pointers.
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
LHS.getVal(), RHS.getVal(), "cmp");
}
} else {
// Struct/union/complex
assert(0 && "Aggregate comparisons not implemented yet!");
}
// ZExt result to int.
return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext"));
}
RValue CodeGenFunction::EmitBinaryAnd(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
}
RValue CodeGenFunction::EmitBinaryXor(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
}
RValue CodeGenFunction::EmitBinaryOr(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
}
RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
EmitBlock(RHSBlock);
llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
EmitBlock(ContBlock);
// Create a PHI node. If we just evaluted the LHS condition, the result is
// false. If we evaluated both, the result is the RHS condition.
llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
PN->reserveOperandSpace(2);
PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
PN->addIncoming(RHSCond, RHSBlock);
// ZExt result to int.
return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
}
RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
EmitBlock(RHSBlock);
llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
EmitBlock(ContBlock);
// Create a PHI node. If we just evaluted the LHS condition, the result is
// true. If we evaluated both, the result is the RHS condition.
llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
PN->reserveOperandSpace(2);
PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
PN->addIncoming(RHSCond, RHSBlock);
// ZExt result to int.
return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
}
RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
LValue LHS = EmitLValue(E->getLHS());
QualType RHSTy;
RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
// Convert the RHS to the type of the LHS.
RHS = EmitConversion(RHS, RHSTy, E->getType());
// Store the value into the LHS.
EmitStoreThroughLValue(RHS, LHS, E->getType());
// Return the converted RHS.
return RHS;
}
RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
EmitExpr(E->getLHS());
return EmitExpr(E->getRHS());
}
|