| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
This simplifies the test cases.
llvm-svn: 307645
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Providing the context to the ast generator allows for additional simplifcations
and -- more importantly -- allows to generate loops with only partially bounded
domains, assuming the domains are bounded for all parameter configurations
that are valid as defined by the context.
This change fixes the crash reported in http://llvm.org/PR30956
The original reason why we did not include the context when generating an
AST was that CLooG and later isl used to sometimes transfer some of the
constraints that bound the size of parameters from the context into the
generated AST. This resulted in operations with very large constants, which
sometimes introduced problematic integer overflows. The latest versions of
the isl AST generator are careful to not introduce such constants.
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286442
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
|
|
|
|
|
|
|
|
|
| |
This patch refactors the code generation for divisions. This allows to
always generate a shift for a power-of-two division and to utilize
information about constant divisors in order to truncate the result
type.
llvm-svn: 271898
|
|
|
|
|
|
|
|
|
| |
We now generate runtime checks __after__ the SCoP code generation and
not before, though they are still inserted at the same position int
the code. This allows to modify the runtime check during SCoP code
generation.
llvm-svn: 271894
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We utilize assumptions on the input to model IR in polyhedral world.
To verify these assumptions we version the code and guard it with a
runtime-check (RTC). However, since the RTCs are themselves generated
from the polyhedral representation we generate them under the same
assumptions that they should verify. In other words, the guarantees
that we try to provide with the RTCs do not hold for the RTCs
themselves. To this end it is necessary to employ a different check
for the RTCs that will verify the assumptions did hold for them too.
Differential Revision: http://reviews.llvm.org/D20165
llvm-svn: 269299
|
|
|
|
| |
llvm-svn: 261488
|
|
|
|
| |
llvm-svn: 257898
|
|
|
|
|
|
|
|
| |
These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.
llvm-svn: 249422
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instructions which we can synthesis from a SCEV expression are not
generated directly, but only when they are used as an operand of
another instruction. This avoids generating unnecessary instructions
and works more reliably than first inserting them and then deleting
them later on.
This commit was reverted in r248860 due to a remaining miscompile, where
we forgot to synthesis the operand values that were referenced from scalar
writes. test/Isl/CodeGen/scalar-store-from-same-bb.ll tests that we do this
now correctly.
llvm-svn: 248900
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As a first step in the direction of assumed invariant loads (loads
that are not written in some context) we now detect and hoist
definitively invariant loads. These invariant loads will be preloaded
in the code generation and used in the optimized version of the SCoP.
If the load is only conditionally executed the preloaded version will
also only be executed under the same condition, hence we will never
access memory that wouldn't have been accessed otherwise. This is also
the most distinguishing feature to licm.
As hoisting can make statements empty we will simplify the SCoP and
remove empty statements that would otherwise cause artifacts in the
code generation.
Differential Revision: http://reviews.llvm.org/D13194
llvm-svn: 248861
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 07830c18d789ee72812d5b5b9b4f8ce72ebd4207.
The commit broke at least one test in lnt,
MultiSource/Benchmarks/Ptrdist/bc/number.c
was miss compiled and the test produced a wrong result.
One Polly test case that was added later was adjusted too.
llvm-svn: 248860
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instructions which we can synthesis from a SCEV expression are not generated
directly, but only when they are used as an operand of another instruction. This
avoids generating unnecessary instruction and works more reliably than first
inserting them and then deleting them later on.
Suggested-by: Johannes Doerfert <doerfert@cs.uni-saarland.de>
Differential Revision: http://reviews.llvm.org/D13208
llvm-svn: 248712
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a region does not have more than one loop, we do not identify it as
a Scop in ScopDetection. The main optimizations Polly is currently performing
(tiling, preparation for outer-loop vectorization and loop fusion) are unlikely
to have a positive impact on individual loops. In some cases, Polly's run-time
alias checks or conditional hoisting may still have a positive impact, but those
are mostly enabling transformations which LLVM already performs for individual
loops. As we do not focus on individual loops, we leave them untouched to not
introduce compile time regressions and execution time noise. This results in
good compile time reduction (oourafft: -73.99%, smg2000: -56.25%).
Contributed-by: Pratik Bhatu <cs12b1010@iith.ac.in>
Reviewers: grosser
Differential Revision: http://reviews.llvm.org/D12268
llvm-svn: 246161
|
|
|
|
|
|
|
|
|
| |
LLVM's instcombine already translates power-of-two sdivs that are known to be
exact to fast ashr instructions. Hence, there is no need to add this logic
ourselves.
Pointed-out-by: Johannes Doerfert
llvm-svn: 239025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We now verify that memory access functions imported via JSON are indeed defined
for the full iteration domain. Before this change we accidentally imported
memory mappings such as i -> i / 127, which only defined a mapped for values of
i that are evenly divisible by 127, but which did not define any mapping for the
remaining values, with the result that isl just generated an access expression
that had undefined behavior for all the unmapped values.
In the incorrect test cases, we now either use floor(i/127) or we use p/127 and
provide the information that p is indeed a multiple of 127.
llvm-svn: 239024
|
|
|
|
| |
llvm-svn: 238929
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Power-of-two floor divisions can be translated into an arithmetic shift
operation. This allows us to replace a complex lowering that requires division
operations:
%pexp.fdiv_q.0 = sub i64 %21, 128
%pexp.fdiv_q.1 = add i64 %pexp.fdiv_q.0, 1
%pexp.fdiv_q.2 = icmp slt i64 %21, 0
%pexp.fdiv_q.3 = select i1 %pexp.fdiv_q.2, i64 %pexp.fdiv_q.1, i64 %21
%pexp.fdiv_q.4 = sdiv i64 %pexp.fdiv_q.3, 128
with a simple ashr:
%polly.fdiv_q.shr = ashr i64 %21, 7
llvm-svn: 238905
|
|
isl marks known non-negative numerators in modulo (and soon also division)
operations. We now exploit this by generating unsigned operations. This is
beneficial as unsigned operations with power-of-two denominators will be
translated by isl to fast bitshift or bitwise and operations.
llvm-svn: 238577
|