| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
This change fixes the build on Windows, so that cblas_interface.dll
exports functions correctly and an implib is created and installed
correctly.
Currently, LLVM cannot be consumed on Windows after it has been
installed in a location because cblas_interface.lib is not
created/installed, thus failing the import check in `LLVMExports.cmake`.
Differential Revision: https://reviews.llvm.org/D72384
|
|
|
|
| |
PiperOrigin-RevId: 286906740
|
|
|
|
|
|
|
|
|
|
|
| |
Now that MLIR has a standardized StridedMemRef descriptor, it becomes very easy to interact with external library functions and build utilities directly in C++.
This CL introduces basic printing support in a libmlir_utils.so.
Unit tests are rewritten using this feature and also to improve coverage.
For now, C mandates that we have a unique function for each MemRef element type and rank.
In a future a simple unranked descriptor can be introduced to only require uniqu'ing by element type.
PiperOrigin-RevId: 273304741
|
|
|
|
|
|
|
| |
This CL finishes the implementation of the Linalg + Affine type unification of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
As a consequence, the !linalg.view type, linalg::DimOp, linalg::LoadOp and linalg::StoreOp can now disappear and Linalg can use standard types everywhere.
PiperOrigin-RevId: 272187165
|
|
|
|
|
|
| |
This CL extends support for lowering of linalg to external C++ libraries with CopyOp. Currently this can only work when the permutation maps in the copies are identity. Future support for permutations will be added later.
PiperOrigin-RevId: 265093025
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The linalg.view type used to be lowered to a struct containing a data pointer, offset, sizes/strides information. This was problematic when passing to external functions due to ABI, struct padding and alignment issues.
The linalg.view type is now lowered to LLVMIR as a *pointer* to a struct containing the data pointer, offset and sizes/strides. This simplifies the interfacing with external library functions and makes it trivial to add new functions without creating a shim that would go from a value type struct to a pointer type.
The consequences are that:
1. lowering explicitly uses llvm.alloca in lieu of llvm.undef and performs the proper llvm.load/llvm.store where relevant.
2. the shim creation function `getLLVMLibraryCallDefinition` disappears.
3. views are passed by pointer, scalars are passed by value. In the future, other structs will be passed by pointer (on a per-need basis).
PiperOrigin-RevId: 264183671
|
|
|
|
|
|
|
|
|
|
| |
This CL introduces the ability to generate the external library name for Linalg operations.
The problem is that neither mlir or C support overloading and we want a simplified form of name mangling that is still reasonable to read.
This CL creates the name of the external call that Linalg expects from the operation name and the type of its arguments.
The interface library names are updated and use new cases are added for FillOp.
PiperOrigin-RevId: 262556833
|
|
|
|
| |
PiperOrigin-RevId: 260136255
|
|
|
|
|
|
|
|
|
| |
This CL adds a few specializations for sgemm.
A minor change to alpha is made in cblas_interface.cpp to be compatible with actual BLAS calls.
For now this is for internal testing purposes only.
PiperOrigin-RevId: 260129027
|
|
|
|
|
|
| |
This CL provides a fix that makes linal_matmul_impl compliant with the BLAS interface. Before this CL it would compute either C += A * B when called with cblas.cpp:cblas_sgemm implementation and C = A * B with other implementations.
PiperOrigin-RevId: 260117367
|
|
This CL adds a lowering to LLVM for MamulOp and a corresponding integration test.
View descriptor manipulation is moved from MLIR's LLVM dialect to C++ code compiled on the side. To this end a separation is introduced between `cblas.cpp` and `cblas_interface.cpp`, the latter operating on view types whose ABI correspond to the LLVM signature generated by MLIR.
An intermediary step is introduced that allocates a new descriptor on the MLIR side for the purpose of passing it to LLVM. The reason for this extra step is that the ABI for by-value ViewType objects wants aligned descriptors, e.g.:
```
extern "C" void linalg_dot_impl(ViewType<float, 1> X, ViewType<float, 1> Y,
BaseViewType<float> Z) {
...
}
```
produces LLVM IR with the signature:
```
%struct.ViewType = type { %struct.BaseViewType, [1 x i64], [1 x i64] }
%struct.BaseViewType = type { float*, i64 }
define void @linalg_dot_impl(%struct.ViewType* byval align 8, %struct.ViewType* byval align 8, float*, i64) tensorflow/mlir#0 {
...
}
```
We don't seem to be able to make such aligned allocations in the MLIR -> LLVM converter atm.
Going through a level of indirection allows the test to pass.
The temporary tradeoff is that the MLIR shims have to be written by hand.
They will disappear in the future.
PiperOrigin-RevId: 252670672
|