| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This CL added op definitions for a few bit operations:
* OpShiftLeftLogical
* OpShiftRightArithmetic
* OpShiftRightLogical
* OpBitCount
* OpBitReverse
* OpNot
Also moved the definition of spv.BitwiseAnd to follow the
lexicographical order.
Closes tensorflow/mlir#215
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/215 from denis0x0D:sandbox/bit_ops d9b0852b689ac6c4879a9740b1740a2357f44d24
PiperOrigin-RevId: 279350470
|
|
|
|
|
|
| |
dynamic sizes in the operand list.
PiperOrigin-RevId: 279114236
|
|
|
|
|
|
| |
Now that a view op has graduated to the std dialect, we can update Linalg to use it and remove ops that have become obsolete. As a byproduct, the linalg buffer and associated ops can also disappear.
PiperOrigin-RevId: 279073591
|
|
|
|
| |
PiperOrigin-RevId: 279013404
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#216
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/216 from schweitzpgi:llvmir-fneg-op f9b5f185845d671b745ab6fc213d5d9aff044b34
PiperOrigin-RevId: 278795325
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.
Example:
// A complex initializer is constructed with an initializer region.
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
%0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
%1 = llvm.mlir.constant(2 : i32) : !llvm.i32
%2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
llvm.return %2 : !llvm<"i32*">
}
PiperOrigin-RevId: 278717836
|
|
|
|
| |
PiperOrigin-RevId: 278440547
|
|
|
|
|
|
|
|
| |
directly.
This simplifies the implementation quite a bit, and removes the need for explicit string munging. One change is made to some of the enum elements of SPV_DimAttr to ensure that they are proper identifiers; The string form is now prefixed with 'Dim'.
PiperOrigin-RevId: 278027132
|
|
|
|
|
|
| |
This simplifies the implementation, and removes the need to do explicit string manipulation. A utility method 'parseDimensionList' is added to the DialectAsmParser to simplify defining types and attributes that contain shapes.
PiperOrigin-RevId: 278020604
|
|
|
|
|
|
| |
This greatly simplifies the implementation and removes custom parser functionality. The necessary methods are added to the DialectAsmParser.
PiperOrigin-RevId: 278015983
|
|
|
|
| |
PiperOrigin-RevId: 277967079
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This CL adds a simple pattern for specifying producer-consumer fusion on Linalg operations.
Implementing such an extension reveals some interesting properties.
Since Linalg operates on a buffer abstraction, the output buffers are specified as in/out parameters to the ops. As a consequence, there are no SSA use-def chains and one cannot specify complex dag input patterns with the current infrastructure.
Instead this CL uses constraints based on the existing linalg dependence analysis to focus the pattern and refine patterns based on the type of op that last wrote in a buffer.
This is a very local property and is less powerful than the generic dag specification based on SSA use-def chains.
This will be generalized in the future.
PiperOrigin-RevId: 277931503
|
|
|
|
|
|
| |
Also adds a builder method for fcmp, identical to that for icmp.
PiperOrigin-RevId: 277923158
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This CL added op definitions for a few cast operations:
* OpConvertFToU
* OpConvertFToS
* OpConvertSToF
* OpConvertUToF
* OpUConvert
* OpSConvert
* OpFConvert
Also moved the definition of spv.Bitcast to the new file.
Closes tensorflow/mlir#208 and tensorflow/mlir#174
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/208 from denis0x0D:sandbox/cast_ops 79bc9b37398aafddee6cf6beb301807988fe67f9
PiperOrigin-RevId: 277587891
|
|
|
|
|
|
|
|
|
| |
Linalg ops provide a good anchor for pattern matching/rewriting transformations.
This CL adds a simple example of how multi-level tiling may be specified by attaching a simple StringAttr to ops as they are transformed so we can easily specify partial lowering to control transformation application.
This is a first stab at taking advantage of higher-level information contained in Linalg ops and will evolve in the future.
PiperOrigin-RevId: 277497958
|
|
|
|
|
|
|
|
|
| |
This CL fixed gen_spirv_dialect.py to support nested delimiters when
chunking existing ODS entries in .td files and to allow ops without
correspondence in the spec. This is needed to pull in the definition
of OpUnreachable.
PiperOrigin-RevId: 277486465
|
|
|
|
|
|
|
|
|
|
| |
This CL adds another control flow instruction in SPIR-V: OpPhi.
It is modelled as block arguments to be idiomatic with MLIR.
See the rationale.md doc for "Block Arguments vs PHI nodes".
Serialization and deserialization is updated to convert between
block arguments and SPIR-V OpPhi instructions.
PiperOrigin-RevId: 277161545
|
|
|
|
|
|
|
|
|
|
| |
Combine chained `spirv::AccessChainOp` operations into one
`spirv::AccessChainOp` operation.
Closes tensorflow/mlir#198
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/198 from denis0x0D:sandbox/canon_access_chain 0cb87955a85511071143d62637ff939d0dabc2bd
PiperOrigin-RevId: 276609345
|
|
|
|
|
|
| |
This allows for them to be used on other non-function, or even other function-like, operations. The algorithms are already generic, so this is simply changing the derived pass type. The majority of this change is just ensuring that the nesting of these passes remains the same, as the pass manager won't auto-nest them anymore.
PiperOrigin-RevId: 276573038
|
|
|
|
|
|
|
|
|
| |
fix: nonnegative -> positive
Closes tensorflow/mlir#206
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/206 from bondhugula:bondhugula-patch-1 9a47ca7dfd230180a9df33e9a64b33d02252d30a
PiperOrigin-RevId: 276060885
|
|
|
|
|
|
|
|
|
|
|
|
| |
We will use block arguments as the way to model SPIR-V OpPhi in
the SPIR-V dialect.
This CL also adds a few useful helper methods to both ops to
get the block arguments.
Also added tests for branch weight (de)serialization.
PiperOrigin-RevId: 275960797
|
|
|
|
|
|
| |
This trait provides accessors for the name, symbol use list methods, verification, with more to be added.
PiperOrigin-RevId: 275864554
|
|
|
|
|
|
| |
Closes tensorflow/mlir#175
PiperOrigin-RevId: 275726876
|
|
|
|
|
|
| |
Closes tensorflow/mlir#177
PiperOrigin-RevId: 275692653
|
|
|
|
|
|
|
|
| |
nvvm.shfl.sync.bfly optionally returns a predicate whether source lane was active. Support for this was added to clang in https://reviews.llvm.org/D68892.
Add an optional 'pred' unit attribute to the instruction to return this predicate. Specify this attribute in the partial warp reduction so we don't need to manually compute the predicate.
PiperOrigin-RevId: 275616564
|
|
|
|
|
|
| |
This allows mixing linalg operations with vector transfer operations (with additional modifications to affine ops) and is a step towards solving tensorflow/mlir#189.
PiperOrigin-RevId: 275543361
|
|
|
|
|
|
| |
constraints.
PiperOrigin-RevId: 275448372
|
|
|
|
|
|
|
|
| |
Adding gen table for rewrite patterns from GPU to NVVM dialect.
Copy missing op documentation from GPUOps.td to GPU.md.
PiperOrigin-RevId: 275419588
|
|
|
|
|
|
| |
This CL creates a new Linalg promotion pass that operates on SubViewOp and decouples it from Linalg tiling. This is mostly moving code around.
PiperOrigin-RevId: 275329213
|
|
|
|
|
|
|
|
|
|
|
| |
Add a canonicalization pattern for spv.selection operation.
Convert spv.selection operation to spv.Select based on
simple pattern.
Closes tensorflow/mlir#183
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/183 from denis0x0D:sandbox/canon_select 43d04d923272dd60b9da39f70bdbc51a5168db62
PiperOrigin-RevId: 275312748
|
|
|
|
|
|
|
|
|
| |
'_' is used frequently enough as the separator of words in symbols.
We should allow it in dialect symbols when considering pretty printing.
Also updated LangRef.md regarding pretty form.
PiperOrigin-RevId: 275312494
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We just need to implement a few interface hooks to DialectInlinerInterface
and CallOpInterface to gain the benefits of an inliner. :)
Right now only supports some trivial cases:
* Inlining single block with spv.Return/spv.ReturnValue
* Inlining multi block with spv.Return
* Inlining spv.selection/spv.loop without return ops
More advanced cases will require block argument and Phi support.
PiperOrigin-RevId: 275151132
|
|
|
|
|
|
|
|
|
|
| |
In addition to specifying the type of accumulation through the 'op' attribute, the accumulation can now also be specified as arbitrary code region.
Adds a gpu.yield op to specify the result of the accumulation.
Also support more types (integers) and accumulations (mul).
PiperOrigin-RevId: 275065447
|
|
|
|
| |
PiperOrigin-RevId: 274935374
|
|
|
|
|
|
|
|
| |
The SpecId decoration is the handle for providing external specialization.
Similar to descriptor set and binding on global variables, we directly
bake it into assembly parsing and printing.
PiperOrigin-RevId: 274893879
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When the implementation of the strided memref [RFC](https://groups.google.com/a/tensorflow.org/forum/#!msg/mlir/MaL8m2nXuio/1scRqZa6AQAJ) landed, linalg started using this type instead of the now retired !linalg.view.
As static and partially static cases appear, the stride information needs to be maintained properly. In particular, the result type of the subview op was generally incorrect.
This CL fixes the issue by computing a return type that:
1. always has dynamic sizes, which is generally the only correct way to construct a subview in the absence of data padding and/or code versioning.
2. has the same strides as the base strided memref.
Point 1. above can be further refined but will needs further analysis and canonicalization to optimize the particular case where:
1. The base memref has static size along a given dimension.
2. The subview size can be statically derived (e.g. after canonicalization).
3. *And* the subview size is an even divisor of the base memref.
This 3rd constraint is well-known in the case of tiled layouts that don't assume implicit padding: the boundary tile may be only partial and has size given by `problem_size % tile_size`.
Tests are updated as appropriate.
PiperOrigin-RevId: 274578624
|
|
|
|
|
|
|
|
|
| |
This fixes an omission that prevents Linalg to lower generic ops regions operating on ops in the VectorOps dialect.
To achieve this we simply need to `populateVectorToLLVMConversionPatterns` in the conversion.
Relevant tests are added.
PiperOrigin-RevId: 274577325
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#184
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/184 from schweitzpgi:more-float-types ca27d00510a86ffc9c79c65fb3a0193b5ea097a0
PiperOrigin-RevId: 274288813
|
|
|
|
|
|
|
|
| |
Similarly to `llvm.mlir.undef`, this auxiliary operation creates an SSA value
that corresponds to `null` in LLVM IR. This operation is necessary to model
sizeof(<...>) behavior when allocating memory.
PiperOrigin-RevId: 274158760
|
|
|
|
|
|
|
|
|
|
|
| |
The lowering is specified as a pattern and is done only if the result
is a SPIR-V scalar type or vector type.
Handling ConstantOp with index return type needs special handling
since SPIR-V dialect does not have index types. Based on the bitwidth
of the attribute value, either i32 or i64 is chosen.
Other constant lowerings are left as a TODO.
PiperOrigin-RevId: 274056805
|
|
|
|
|
|
|
|
|
|
|
| |
Add a pass to decorate the composite types used by
composite objects in the StorageBuffer, PhysicalStorageBuffer,
Uniform, and PushConstant storage classes with layout information.
Closes tensorflow/mlir#156
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/156 from denis0x0D:sandbox/layout_info_decoration 7c50840fd38ca169a2da7ce9886b52b50c868b84
PiperOrigin-RevId: 273634140
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kernel function called by gpu.launch_func is now placed into an isolated
nested module during the outlining stage to simplify separate compilation.
Until recently, modules did not have names and could not be referenced. This
limitation was circumvented by introducing a stub kernel at the same name at
the same nesting level as the module containing the actual kernel. This
relation is only effective in one direction: from actual kernel function to its
launch_func "caller".
Leverage the recently introduced symbol name attributes on modules to refer to
a specific nested module from `gpu.launch_func`. This removes the implicit
connection between the identically named stub and kernel functions. It also
enables support for `gpu.launch_func`s to call different kernels located in the
same module.
PiperOrigin-RevId: 273491891
|
|
|
|
| |
PiperOrigin-RevId: 273379318
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The SPIR-V spec recommends all OpUndef instructions be generated at
module level. For the SPIR-V dialect its better for UndefOp to produce
an SSA value for use with other instructions. If UndefOp is to be used
at module level, it cannot produce an SSA value (use of this SSA value
within FuncOp would need implicit capture). To satisfy needs of the
SPIR-V spec while making it simpler to represent UndefOp in the SPIR-V
dialect, the serialization is updated to create OpUndef instruction
at module scope.
PiperOrigin-RevId: 273355526
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The structured selection/loop's entry block does not have arguments.
If the function's header block is also part of the structured control
flow, we cannot just simply erase it because it may contain arguments
matching the function signature and used by the cloned blocks. Instead,
turn it into a block only containing a spv.Branch op.
Also, we can directly emit instructions for the spv.selection header
block to the block containing the spv.selection op. This eliminates
unnecessary branches in the SPIR-V blob.
Added a test for nested spv.loop.
PiperOrigin-RevId: 273351424
|
|
|
|
|
|
|
|
| |
Now that linalg.view and strided memrefs are unified, there is no reason to
disallow AllocOp in alias analysis. This CLs adds support for AllocOp which allows writing shorter tests that do not require explicitly creating a view for
each operation.
PiperOrigin-RevId: 273303060
|
|
|
|
|
|
|
| |
Use `getParentOfType<FunctionOp>()` instead of `cast<FuncOp>(getParentOp())`
to avoid crash when return ops are used inside spv.selection/spv.loop.
PiperOrigin-RevId: 273006041
|
|
|
|
|
|
|
|
| |
Adding support for OpUndef instruction. Updating the dialect
generation script to fix a few bugs in the instruction spec
generation.
PiperOrigin-RevId: 272975685
|
|
|
|
|
|
|
|
|
|
|
|
| |
Certain lowering patterns were reported as [missing](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/dkdmHa77sSQ).
This CL adds them and allows Linalg/roundtrip.mlir and Linalg/loops.mlir to lower to LLVM directly. Those 2 tests are updated to additionally check that the direct lowering to LLVM does not crash.
The following points, left as TODOs still need to be addressed for correct end-to-end execution:
1. the lowering for ConvOp needs to pass attributes such as strides and dilations; the external library call needs to support it.
2. the lowering for GenericOp needs to support lowering to loops as a DialectConversion pattern. This is blocked on the DialectConversion infrastructure accepting an OperationFolder.
PiperOrigin-RevId: 272878131
|
|
|
|
|
|
|
| |
The first dim length of the axisStats attribute should equals to the slice size
of the input argument when splitted by the axis dimension.
PiperOrigin-RevId: 272798042
|