| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
properly value-typed.
Summary: These were temporary methods used to simplify the transition.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D72548
|
|
|
|
|
|
| |
ValuePtr was a temporary typedef during the transition to a value-typed Value.
PiperOrigin-RevId: 286945714
|
|
|
|
| |
PiperOrigin-RevId: 286906740
|
|
|
|
|
|
|
|
|
|
| |
Value being value-typed.
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
|
|
|
|
|
|
|
|
| |
in `mlir` namespace.
Aside from being cleaner, this also makes the codebase more consistent.
PiperOrigin-RevId: 286206974
|
|
|
|
|
|
| |
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.
PiperOrigin-RevId: 284360710
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#301
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/301 from AlexandreEichenberger:vect-doc-update 7e5418a9101a4bdad2357882fe660b02bba8bd01
PiperOrigin-RevId: 284202462
|
|
|
|
|
|
|
|
|
| |
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.
This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.
PiperOrigin-RevId: 283660308
|
|
|
|
|
|
|
|
|
|
| |
Change vector op names from VectorFooOp to Vector_FooOp and from
vector::VectorFooOp to vector::FooOp.
Closes tensorflow/mlir#257
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/257 from Kayjukh:master dfc3a0e04114885aaec8740d5951d6984d6e1577
PiperOrigin-RevId: 281967461
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This CL moves VectorOps to Tablegen and cleans up the implementation.
This is almost NFC but 2 changes occur:
1. an interface change occurs in the padding value specification in vector_transfer_read:
the value becomes non-optional. As a shortcut we currently use %f0 for all paddings.
This should become an OpInterface for vectorization in the future.
2. the return type of vector.type_cast is trivial and simplified to `memref<vector<...>>`
Relevant roundtrip and invalid tests that used to sit in core are moved to the vector dialect.
The op documentation is moved to the .td file.
PiperOrigin-RevId: 280430869
|
|
|
|
|
|
| |
Closes tensorflow/mlir#177
PiperOrigin-RevId: 275692653
|
|
|
|
|
|
| |
These don't add any value, and some are even more restrictive than the respective static 'get' method.
PiperOrigin-RevId: 275391240
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- add canonicalization pattern to compose maps into affine loads/stores;
templatize the pattern and reuse it for affine.apply as well
- rename getIndices -> getMapOperands() (getIndices is confusing since
these are no longer the indices themselves but operands to the map
whose results are the indices). This also makes the accessor uniform
across affine.apply/load/store. Change arg names on the affine
load/store builder to avoid confusion. Drop an unused confusing build
method on AffineStoreOp.
- update incomplete doc comment for canonicalizeMapAndOperands (this was
missed from a previous update).
Addresses issue tensorflow/mlir#121
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closes tensorflow/mlir#122
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/122 from bondhugula:compose-load-store e71de1771e56a85c4282c10cb43f30cef0701c4f
PiperOrigin-RevId: 269619540
|
|
|
|
|
|
| |
These directives were temporary during the generalization of FunctionPass/ModulePass to OpPass.
PiperOrigin-RevId: 268970259
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552
|
|
|
|
| |
PiperOrigin-RevId: 264482571
|
|
|
|
| |
PiperOrigin-RevId: 264277760
|
|
|
|
| |
PiperOrigin-RevId: 264193915
|
|
|
|
|
|
|
|
| |
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
|
|
|
|
|
|
|
|
| |
This CL is step 2/n towards building a simple, programmable and portable vector abstraction in MLIR that can go all the way down to generating assembly vector code via LLVM's opt and llc tools.
This CL adds the vector.extractelement operation to the MLIR vector dialect as well as the appropriate roundtrip test. Lowering to LLVM will occur in the following CL.
PiperOrigin-RevId: 262545089
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When inlining the declaration for llvm::DenseSet/DenseMap in the mlir
namespace from a forward declaration, clang does not take the default
for the template parameters if their are declared later.
namespace llvm {
template<typename Foo>
class DenseMap;
}
namespace mlir {
using llvm::DenseMap;
}
namespace llvm {
template<typename Foo = int>
class DenseMap {};
}
namespace mlir {
DenseMap<> map;
}
PiperOrigin-RevId: 261495612
|
|
|
|
| |
PiperOrigin-RevId: 257293379
|
|
|
|
|
|
|
|
|
|
|
| |
affine.load/store/dma_start/dma_wait.
In most places, this is just a name change (with the exception of affine.dma_start swapping the operand positions of its tag memref and num_elements operands).
Significant code changes occur here:
*) Vectorization: LoopAnalysis.cpp, Vectorize.cpp
*) Affine Transforms: Transforms/Utils/Utils.cpp
PiperOrigin-RevId: 256395088
|
|
|
|
|
|
| |
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).
PiperOrigin-RevId: 255983022
|
|
|
|
|
|
| |
Now that Locations are Attributes they contain a direct reference to the MLIRContext, i.e. the context can be directly accessed from the given location instead of being explicitly passed in.
PiperOrigin-RevId: 254568329
|
|
|
|
|
|
| |
being a separate Attribute type. DenseElementsAttr provides a better internal representation for splat values as well as better API for accessing elements.
PiperOrigin-RevId: 253138287
|
|
|
|
|
|
| |
instead of a function.
PiperOrigin-RevId: 251563898
|
|
|
|
|
|
|
|
|
|
|
|
| |
* the 'empty' method should be used to check for emptiness instead of 'size'
* using decl 'CapturableHandle' is unused
* redundant get() call on smart pointer
* using decl 'apply' is unused
* using decl 'ScopeGuard' is unused
--
PiperOrigin-RevId: 250623863
|
|
|
|
|
|
|
|
| |
These are only required in .h files to disambiguate between C and C++ header files.
--
PiperOrigin-RevId: 248219135
|
|
|
|
|
|
| |
--
PiperOrigin-RevId: 247789235
|
|
|
|
|
|
| |
--
PiperOrigin-RevId: 247785983
|
|
|
|
|
|
|
|
| |
replace usages of Operation::dyn_cast with llvm::dyn_cast.
--
PiperOrigin-RevId: 247780086
|
|
|
|
| |
PiperOrigin-RevId: 247778691
|
|
|
|
|
|
|
|
| |
replace usages of Operation::dyn_cast with llvm::dyn_cast.
--
PiperOrigin-RevId: 247778391
|
|
|
|
|
|
|
|
| |
Fix gcc warning.
--
PiperOrigin-RevId: 247647114
|
|
|
|
|
|
|
|
|
|
|
| |
Trying to activate both LLVM and MLIR passes in mlir-cpu-runner showed name collisions when registering pass names.
One possible way of disambiguating that should also work across dialects is to prepend the dialect name to the passes that specifically operate on that dialect.
With this CL, mlir-cpu-runner tests still run when both LLVM and MLIR passes are registered
--
PiperOrigin-RevId: 246539917
|
|
|
|
|
|
|
|
| |
functionality needed to separate notes from remarks. It also provides a starting point to start building out better remark infrastructure.
--
PiperOrigin-RevId: 246175216
|
|
|
|
|
|
| |
--
PiperOrigin-RevId: 241994767
|
|
|
|
|
|
|
|
| |
and rename walkPostOrder to walk.
--
PiperOrigin-RevId: 241965239
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On the read side,
```
%3 = vector_transfer_read %arg0, %i2, %i1, %i0 {permutation_map: (d0, d1, d2)->(d2, d0)} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
```
becomes:
```
%3 = vector_transfer_read %arg0[%i2, %i1, %i0] {permutation_map: (d0, d1, d2)->(d2, d0)} : memref<?x?x?xf32>, vector<32x256xf32>
```
On the write side,
```
vector_transfer_write %0, %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0)} : vector<128xf32>, memref<?x?xf32>, index, index
```
becomes
```
vector_transfer_write %0, %arg0[%c3, %c3] {permutation_map: (d0, d1)->(d0)} : vector<128xf32>, memref<?x?xf32>
```
Documentation will be cleaned up in a followup commit that also extracts a proper .md from the top of the file comments.
PiperOrigin-RevId: 241021879
|
|
|
|
|
|
|
| |
This CL allows the programmatic control of the target hardware vector size when creating a MaterializeVectorsPass.
This is useful for registering passes for the tutorial.
PiperOrigin-RevId: 240996136
|
|
|
|
|
|
|
|
|
|
| |
This CL removes the reliance of the vectorize pass on the specification of a `fastestVaryingDim` parameter. This parameter is a restriction meant to more easily target a particular loop/memref combination for vectorization and is mainly used for testing.
This also had the side-effect of restricting vectorization patterns to only the ones in which all memrefs were contiguous along the same loop dimension. This simple restriction prevented matmul to vectorize in 2-D.
this CL removes the restriction and adds the matmul test which vectorizes in 2-D along the parallel loops. Support for reduction loops is left for future work.
PiperOrigin-RevId: 240993827
|
|
|
|
|
|
| |
Now that we have a dependence analysis, we can check that loops are indeed parallel and make vectorization correct.
PiperOrigin-RevId: 240682727
|
|
|
|
|
|
|
| |
This CL allows vectorization to be called and configured in other ways than just via command line arguments.
This allows triggering vectorization programmatically.
PiperOrigin-RevId: 240638208
|
|
|
|
| |
PiperOrigin-RevId: 240636130
|
|
|
|
| |
PiperOrigin-RevId: 240569775
|
|
|
|
|
|
| |
This is step 2/N to renaming Instruction to Operation.
PiperOrigin-RevId: 240459216
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, regions can only be constructed by passing in a `Function` or an
`Instruction` pointer referencing the parent object, unlike `Function`s or
`Instruction`s themselves that can be created without a parent. It leads to a
rather complex flow in operation construction where one has to create the
operation first before being able to work with its regions. It may be
necessary to work with the regions before the operation is created. In
particular, in `build` and `parse` functions that are executed _before_ the
operation is created in cases where boilerplate region manipulation is required
(for example, inserting the hypothetical default terminator in affine regions).
Allow creating standalone regions. Such regions are meant to own a list of
blocks and transfer them to other regions on demand.
Each instruction stores a fixed number of regions as trailing objects and has
ownership of them. This decreases the size of the Instruction object for the
common case of instructions without regions. Keep this behavior intact. To
allow some flexibility in construction, make OperationState store an owning
vector of regions. When the Builder creates an Instruction from
OperationState, the bodies of the regions are transferred into the
instruction-owned regions to minimize copying. Thus, it becomes possible to
fill standalone regions with blocks and move them to an operation when it is
constructed, or move blocks from a region to an operation region, e.g., for
inlining.
PiperOrigin-RevId: 240368183
|
|
|
|
|
|
|
| |
a pointer. This makes it consistent with all the other methods in
FunctionPass, as well as with ModulePass::getModule(). NFC.
PiperOrigin-RevId: 240257910
|