| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
properly value-typed.
Summary: These were temporary methods used to simplify the transition.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D72548
|
|
|
|
|
|
| |
ValuePtr was a temporary typedef during the transition to a value-typed Value.
PiperOrigin-RevId: 286945714
|
|
|
|
| |
PiperOrigin-RevId: 286906740
|
|
|
|
|
|
|
|
|
|
| |
Value being value-typed.
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
|
|
|
|
|
|
|
|
|
| |
This function has been declared as a part of the LLVMFuncOp interface but never
implemented.
Closes tensorflow/mlir#325.
PiperOrigin-RevId: 286439619
|
|
|
|
|
|
|
|
| |
in `mlir` namespace.
Aside from being cleaner, this also makes the codebase more consistent.
PiperOrigin-RevId: 286206974
|
|
|
|
|
|
| |
This is a general code cleanup and should be a NFC.
PiperOrigin-RevId: 285972718
|
|
|
|
| |
PiperOrigin-RevId: 285724678
|
|
|
|
|
|
| |
This cleans up the implementation of the various operation print methods. This is done via a combination of code cleanup, adding new streaming methods to the printer(e.g. operand ranges), etc.
PiperOrigin-RevId: 285285181
|
|
|
|
|
|
|
|
|
| |
Accept the address space of the global as a builder argument when constructing
an LLVM::GlobalOp instance. This decreases the reliance of LLVM::GlobalOp users
on the internal name of the attribute used for this purpose. Update several
uses of the address space in GPU to NVVM conversion.
PiperOrigin-RevId: 284233254
|
|
|
|
|
|
|
|
|
|
| |
The AddressOf operation in the LLVM dialect return a pointer to a global
variable. The latter may be in a non-default address space as indicated by the
"addr_space" attribute. Check that the address space of the pointer returned by
AddressOfOp matches that of the referenced GlobalOp. Update the AddressOfOp
builder to respect this constraint.
PiperOrigin-RevId: 284138860
|
|
|
|
|
|
|
|
|
| |
A recent commit introduced the Linkage attribute to the LLVM dialect and used
it in the Global Op. Also use it in LLVMFuncOp. As per LLVM Language Reference,
if the linkage attribute is omitted, the function is assumed to have external
linkage.
PiperOrigin-RevId: 283493299
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.
See tensorflow/mlir#277.
PiperOrigin-RevId: 283309328
|
|
|
|
|
|
|
|
|
|
|
| |
Helper utilies for parsing and printing FunctionLike Ops are only relevant to
the implementation of the Op, not its definition. They depend on
OpImplementation.h and increase the inclusion footprint of FunctionSupport.h,
and do so only to provide some utilities in the "impl" namespace. Move them to
a separate files, similarly to OpDefinition/OpImplementation distinction, and
make only Op implementations use them while keeping headers cleaner. NFC.
PiperOrigin-RevId: 282964556
|
|
|
|
|
|
| |
Also change the text format a bit, so that indices are braced by squares.
PiperOrigin-RevId: 282437095
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.
Example:
// A complex initializer is constructed with an initializer region.
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
%0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
%1 = llvm.mlir.constant(2 : i32) : !llvm.i32
%2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
llvm.return %2 : !llvm<"i32*">
}
PiperOrigin-RevId: 278717836
|
|
|
|
|
|
| |
name of the print method.
PiperOrigin-RevId: 278696668
|
|
|
|
|
|
|
|
| |
Now that a proper parser is passed to these methods, there isn't a need to explicitly pass a source location. The source location can be recovered from the parser as necessary. This removes the need to explicitly decode an SMLoc in the case where we don't need to, which can be expensive.
This requires adding some basic nesting support to the parser for supporting nested parsers to allow for remapping source locations of the nested parsers to the top level parser for accurate diagnostics. This is due to the fact that the attribute and type parsers use different source buffers than the top level parser, as they may be represented in string form.
PiperOrigin-RevId: 278014858
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
parsing.
These classes are functionally similar to the OpAsmParser/Printer classes and provide hooks for parsing attributes/tokens/types/etc. This change merely sets up the base infrastructure and updates the parser hooks, followups will add hooks as needed to simplify existing handrolled dialect parsers.
This has various different benefits:
*) Attribute/Type parsing is much simpler to define.
*) Dialect attributes/types that contain other attributes/types can now use aliases.
*) It provides a 'spec' with which we may use in the future to auto-generate parsers/printers.
*) Error messages emitted by attribute/type parsers can provide character exact locations rather than "beginning of the string"
PiperOrigin-RevId: 278005322
|
|
|
|
|
|
| |
Closes tensorflow/mlir#177
PiperOrigin-RevId: 275692653
|
|
|
|
|
|
|
|
| |
nvvm.shfl.sync.bfly optionally returns a predicate whether source lane was active. Support for this was added to clang in https://reviews.llvm.org/D68892.
Add an optional 'pred' unit attribute to the instruction to return this predicate. Specify this attribute in the partial warp reduction so we don't need to manually compute the predicate.
PiperOrigin-RevId: 275616564
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows dialect-specific attributes to be attached to func results. (or more specifically, FunctionLike ops).
For example:
```
func @f() -> (i32 {my_dialect.some_attr = 3})
```
This attaches my_dialect.some_attr with value 3 to the first result of func @f.
Another more complex example:
```
func @g() -> (i32, f32 {my_dialect.some_attr = "foo", other_dialect.some_other_attr = [1,2,3]}, i1)
```
Here, the second result has two attributes attached.
PiperOrigin-RevId: 275564165
|
|
|
|
|
|
| |
These don't add any value, and some are even more restrictive than the respective static 'get' method.
PiperOrigin-RevId: 275391240
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#184
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/184 from schweitzpgi:more-float-types ca27d00510a86ffc9c79c65fb3a0193b5ea097a0
PiperOrigin-RevId: 274288813
|
|
|
|
|
|
|
|
| |
Similarly to `llvm.mlir.undef`, this auxiliary operation creates an SSA value
that corresponds to `null` in LLVM IR. This operation is necessary to model
sizeof(<...>) behavior when allocating memory.
PiperOrigin-RevId: 274158760
|
|
|
|
|
|
| |
The restriction that symbols can only have identifier names is arbitrary, and artificially limits the names that a symbol may have. This change adds support for parsing and printing symbols that don't fit in the 'bare-identifier' grammar by printing the reference in quotes, e.g. @"0_my_reference" can now be used as a symbol name.
PiperOrigin-RevId: 273644768
|
|
|
|
| |
PiperOrigin-RevId: 270853596
|
|
|
|
|
|
| |
Make GlobalOp's value attribute an OptionalAttr. Change code that uses the value to handle 'nullopt'. Translate an unitialized value attribute to llvm::UndefValue.
PiperOrigin-RevId: 270423646
|
|
|
|
|
|
| |
MLIR follows the LLVM style of pass-by-reference.
PiperOrigin-RevId: 270401378
|
|
|
|
|
|
| |
MLIR follows the LLVM convention of passing by reference instead of by pointer.
PiperOrigin-RevId: 270396945
|
|
|
|
|
|
| |
MLIR follows the LLVM style of pass-by-reference.
PiperOrigin-RevId: 270315612
|
|
|
|
|
|
|
|
|
|
| |
Some of the operations in the LLVM dialect are required to model the LLVM IR in
MLIR, for example "constant" operations are needed to declare a constant value
since MLIR, unlike LLVM, does not support immediate values as operands. To
avoid confusion with actual LLVM operations, we prefix such axuiliary
operations with "mlir.".
PiperOrigin-RevId: 266942838
|
|
|
|
|
|
|
|
|
|
|
|
| |
This conversion has been using a stack-allocated array of i8 to store the
null-terminated kernel name in order to pass it to the CUDA wrappers expecting
a C string because the LLVM dialect was missing support for globals. Now that
the suport is introduced, use a global instead.
Refactor global string construction from GenerateCubinAccessors into a common
utility function living in the LLVM namespace.
PiperOrigin-RevId: 264382489
|
|
|
|
|
|
| |
This CL allows binary operations on n-D vector types to be lowered to LLVMIR by performing an (n-1)-D extractvalue, 1-D vector operation and an (n-1)-D insertvalue.
PiperOrigin-RevId: 264339118
|
|
PiperOrigin-RevId: 264193915
|