| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
PiperOrigin-RevId: 286906740
|
|
|
|
|
|
|
|
| |
Toy tutorial compiler
Fix tensorflow/mlir#229
PiperOrigin-RevId: 279557863
|
|
|
|
|
|
| |
bit of the implementation.
PiperOrigin-RevId: 278982817
|
|
|
|
|
|
| |
This allows for them to be used on other non-function, or even other function-like, operations. The algorithms are already generic, so this is simply changing the derived pass type. The majority of this change is just ensuring that the nesting of these passes remains the same, as the pass manager won't auto-nest them anymore.
PiperOrigin-RevId: 276573038
|
|
|
|
|
|
| |
This change rewrites Ch-4.md to introduced interfaces in a detailed step-by-step manner, adds examples, and fixes some errors.
PiperOrigin-RevId: 275887017
|
|
|
|
| |
PiperOrigin-RevId: 275659433
|
|
|
|
|
|
| |
The GenericCallOp needed to have the CallOpInterface to be picked up by the inliner. This also adds a CastOp to perform shape casts that are generated during inlining. The casts generated by the inliner will be folded away after shape inference.
PiperOrigin-RevId: 275150438
|
|
|
|
|
|
|
|
|
|
| |
This Chapter now introduces and makes use of the Interface concept
in MLIR to demonstrate ShapeInference.
END_PUBLIC
Closes tensorflow/mlir#191
PiperOrigin-RevId: 275085151
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change generalizes the structure of the pass manager to allow arbitrary nesting pass managers for other operations, at any level. The only user visible change to existing code is the fact that a PassManager must now provide an MLIRContext on construction. A new class `OpPassManager` has been added that represents a pass manager on a specific operation type. `PassManager` will remain the top-level entry point into the pipeline, with OpPassManagers being nested underneath. OpPassManagers will still be implicitly nested if the operation type on the pass differs from the pass manager. To explicitly build a pipeline, the 'nest' methods on OpPassManager may be used:
// Pass manager for the top-level module.
PassManager pm(ctx);
// Nest a pipeline operating on FuncOp.
OpPassManager &fpm = pm.nest<FuncOp>();
fpm.addPass(...);
// Nest a pipeline under the FuncOp pipeline that operates on spirv::ModuleOp
OpPassManager &spvModulePM = pm.nest<spirv::ModuleOp>();
// Nest a pipeline on FuncOps inside of the spirv::ModuleOp.
OpPassManager &spvFuncPM = spvModulePM.nest<FuncOp>();
To help accomplish this a new general OperationPass is added that operates on opaque Operations. This pass can be inserted in a pass manager of any type to operate on any operation opaquely. An example of this opaque OperationPass is a VerifierPass, that simply runs the verifier opaquely on the current operation.
/// Pass to verify an operation and signal failure if necessary.
class VerifierPass : public OperationPass<VerifierPass> {
void runOnOperation() override {
Operation *op = getOperation();
if (failed(verify(op)))
signalPassFailure();
markAllAnalysesPreserved();
}
};
PiperOrigin-RevId: 266840344
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
|
|
|
|
|
|
|
| |
main already calls registerPassManagerCLOptions.
TESTED = not (NFC)
PiperOrigin-RevId: 257722013
|
|
|
|
|
|
| |
Module is a legacy name that only exists as a typedef of ModuleOp.
PiperOrigin-RevId: 257427248
|
|
|
|
|
|
| |
As Functions/Modules becomes operations, these methods will conflict with the 'verify' hook already on derived operation types.
PiperOrigin-RevId: 256246112
|
|
|
|
|
|
| |
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.
PiperOrigin-RevId: 256196193
|
|
specialization, and basic combines
--
PiperOrigin-RevId: 242050514
|