summaryrefslogtreecommitdiffstats
path: root/llvm/tools/llvm-mca/Views/InstructionInfoView.cpp
Commit message (Collapse)AuthorAgeFilesLines
* [MC] Add parameter `Address` to MCInstPrinter::printInstFangrui Song2020-01-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | printInst prints a branch/call instruction as `b offset` (there are many variants on various targets) instead of `b address`. It is a convention to use address instead of offset in most external symbolizers/disassemblers. This difference makes `llvm-objdump -d` output unsatisfactory. Add `uint64_t Address` to printInst(), so that it can pass the argument to printInstruction(). `raw_ostream &OS` is moved to the last to be consistent with other print* methods. The next step is to pass `Address` to printInstruction() (generated by tablegen from the instruction set description). We can gradually migrate targets to print addresses instead of offsets. In any case, downstream projects which don't know `Address` can pass 0 as the argument. Reviewed By: jhenderson Differential Revision: https://reviews.llvm.org/D72172
* [MCA] Add flag -show-encoding to llvm-mca.Andrea Di Biagio2019-08-091-5/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Flag -show-encoding enables the printing of instruction encodings as part of the the instruction info view. Example (with flags -mtriple=x86_64-- -mcpu=btver2): Instruction Info: [1]: #uOps [2]: Latency [3]: RThroughput [4]: MayLoad [5]: MayStore [6]: HasSideEffects (U) [7]: Encoding Size [1] [2] [3] [4] [5] [6] [7] Encodings: Instructions: 1 2 1.00 4 c5 f0 59 d0 vmulps %xmm0, %xmm1, %xmm2 1 4 1.00 4 c5 eb 7c da vhaddps %xmm2, %xmm2, %xmm3 1 4 1.00 4 c5 e3 7c e3 vhaddps %xmm3, %xmm3, %xmm4 In this example, column Encoding Size is the size in bytes of the instruction encoding. Column Encodings reports the actual instruction encodings as byte sequences in hex (objdump style). The computation of encodings is done by a utility class named mca::CodeEmitter. In future, I plan to expose the CodeEmitter to the instruction builder, so that information about instruction encoding sizes can be used by the simulator. That would be a first step towards simulating the throughput from the decoders in the hardware frontend. Differential Revision: https://reviews.llvm.org/D65948 llvm-svn: 368432
* [MC][X86] Correctly model additional operand latency caused by transfer ↵Andrea Di Biagio2019-01-231-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | delays from the integer to the floating point unit. This patch adds a new ReadAdvance definition named ReadInt2Fpu. ReadInt2Fpu allows x86 scheduling models to accurately describe delays caused by data transfers from the integer unit to the floating point unit. ReadInt2Fpu currently defaults to a delay of zero cycles (i.e. no delay) for all x86 models excluding BtVer2. That means, this patch is only a functional change for the Jaguar cpu model only. Tablegen definitions for instructions (V)PINSR* have been updated to account for the new ReadInt2Fpu. That read is mapped to the the GPR input operand. On Jaguar, int-to-fpu transfers are modeled as a +6cy delay. Before this patch, that extra delay was added to the opcode latency. In practice, the insert opcode only executes for 1cy. Most of the actual latency is actually contributed by the so-called operand-latency. According to the AMD SOG for family 16h, (V)PINSR* latency is defined by expression f+1, where f is defined as a forwarding delay from the integer unit to the fpu. When printing instruction latency from MCA (see InstructionInfoView.cpp) and LLC (only when flag -print-schedule is speified), we now need to account for any extra forwarding delays. We do this by checking if scheduling classes declare any negative ReadAdvance entries. Quoting a code comment in TargetSchedule.td: "A negative advance effectively increases latency, which may be used for cross-domain stalls". When computing the instruction latency for the purpose of our scheduling tests, we now add any extra delay to the formula. This avoids regressing existing codegen and mca schedule tests. It comes with the cost of an extra (but very simple) hook in MCSchedModel. Differential Revision: https://reviews.llvm.org/D57056 llvm-svn: 351965
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* [llvm-mca] Move namespace mca inside llvm::Fangrui Song2018-10-301-2/+2
| | | | | | | | | | | | | | | | Summary: This allows to remove `using namespace llvm;` in those *.cpp files When we want to revisit the decision (everything resides in llvm::mca::*) in the future, we can move things to a nested namespace of llvm::mca::, to conceptually make them separate from the rest of llvm::mca::* Reviewers: andreadb, mattd Reviewed By: andreadb Subscribers: javed.absar, tschuett, gbedwell, llvm-commits Differential Revision: https://reviews.llvm.org/D53407 llvm-svn: 345612
* [llvm-mca] Refactor class SourceMgr. NFCIAndrea Di Biagio2018-10-241-3/+1
| | | | | | | | Added begin()/end() methods to allow the usage of SourceMgr in foreach loops. With this change, method getMCInstFromIndex() (as well as a couple of other methods) are now redundant, and can be removed from the public interface. llvm-svn: 345147
* [llvm-mca] Move views and stats into a Views subdir. NFC.Matt Davis2018-08-241-0/+91
llvm-svn: 340645
OpenPOWER on IntegriCloud