| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
| |
This seems to match what gcc does for ppc and what every other llvm
backend does.
llvm-svn: 209638
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit is debatable. There are two possible approaches, neither
of which is really satisfactory:
1. Use "@foo(i1 zeroext)" to mean an extension to 32-bits on Darwin,
and 8 bits otherwise.
2. Redefine "@foo(i1)" to mean that the i1 is extended by the caller
to 8 bits. This goes against the spirit of "zeroext" I think, but
it's a bit of a vague construct anyway (by definition you're going
to extend to the amount required by the ABI, that's why it's the
ABI!).
This implements option 2. The DAG machinery really isn't setup for the
first (there's a fairly strong assumption that "zeroext" goes to at
least the smallest register size), and even if it was the resulting
DAG looks like it would be inferior in many cases.
Theoretically we could add AssertZext nodes in the consumers of
ABI-passed values too now, but this actually seems to make the code
worse in practice by making truncation proceed in two steps. The code
produced is equally valid if we continue to assume only the low bit is
defined.
Should fix PR19850
llvm-svn: 209637
|
| |
|
|
|
|
|
|
|
| |
We can eliminate the custom C++ code in favour of some TableGen to
check the same things. Functionality should be identical, except for a
buffer overrun that was present in the C++ code and meant webkit
failed if any small argument needed to be passed on the stack.
llvm-svn: 209636
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
optimization pass.
Add tests for the following transform:
str X, [x0, #32]
...
add x0, x0, #32
->
str X, [x0, #32]!
with X being either w1, x1, s0, d0 or q0.
llvm-svn: 209627
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Cover the following cases:
ldr X, [x0, #32]
...
add x0, x0, #32
->
ldr X, [x0, #32]!
with X being either w1, x1, s0, d0 or q0.
llvm-svn: 209624
|
| |
|
|
| |
llvm-svn: 209619
|
| |
|
|
|
|
|
|
| |
We have a couple of regression tests for load/store pairing, but (to my knowledge) there are no regression tests for the load/store + add/sub folding.
As a first step towards increased test coverage of this area, this commit adds a test for one instance of a load + add to pre-indexed load transformation.
llvm-svn: 209618
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was previously regressed/broken by r192749 (reverted due to this
issue in r192938) and I was about to break it again by accident with
some more invasive changes that deal with the subprogram lists. So to
avoid that and further issues - here's a test.
It's a pretty basic test - in both r192749 and my impending case, this
test would crash, but checking the basics (that we put a subprogram in
just one of the two CUs) seems like a good start.
We still get this wrong in weird ways if the linkonce-odr function
happens to not be identical in the metadata (because it's defined in two
different files (hence the # line directives in this test), etc) even
though it meets the language requirements (identical token stream) for
such a thing. That results in two subprogram DIEs, but only one of them
gets the parameter and high/low pc information, etc. We probably need to
use the DIRef infrastructure to deduplicate functions as we do types to
address this issue - or perhaps teach the BC linker to remove the
duplicate entries in subprogram lists?
llvm-svn: 209614
|
| |
|
|
|
|
| |
Thanks to David Blaikie for the suggestion.
llvm-svn: 209610
|
| |
|
|
|
|
|
|
|
|
|
| |
Seems my previous fix was insufficient - we were still not adding the
inlined function to the abstract scope list. Which meant it wasn't
flagged as inline, didn't have nested lexical scopes in the abstract
definition, and didn't have abstract variables - so the inlined variable
didn't reference an abstract variable, instead being described
completely inline.
llvm-svn: 209602
|
| |
|
|
|
|
|
|
|
| |
straight to llvm-dwarfdump
We still do temporary files in many cases, just updating this particular
one because I was debugging it and made this change while doing so.
llvm-svn: 209601
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently we look at the Aliasee to decide what type of export
directive to use. It seems better to use the type of the alias
directly. This is similar to how we handle the alias having the
same address but other attributes (linkage, visibility) from the
aliasee.
With this patch it is now possible to do things like
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-windows-msvc"
@foo = global [6 x i8] c"\B8*\00\00\00\C3", section ".text", align 16
@f = dllexport alias i32 (), [6 x i8]* @foo
!llvm.module.flags = !{!0}
!0 = metadata !{i32 6, metadata !"Linker Options", metadata !1}
!1 = metadata !{metadata !2, metadata !3}
!2 = metadata !{metadata !"/DEFAULTLIB:libcmt.lib"}
!3 = metadata !{metadata !"/DEFAULTLIB:oldnames.lib"}
llvm-svn: 209600
|
| |
|
|
|
|
| |
The " at the end of the line makes sure we matched the entire directive.
llvm-svn: 209599
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This makes front/back symmetric with begin/end, avoiding some confusion.
Added instr_front/instr_back for the old behavior, corresponding to
instr_begin/instr_end. Audited all three in-tree users of back(), all
of them look like they don't want to look inside bundles.
Fixes an assertion (PR19815) when generating debug info on mips, where a
delay slot was bundled at the end of a branch.
llvm-svn: 209580
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
|
| |
|
|
|
|
|
|
| |
directory".
It didn't match on non-English version of Windows.
llvm-svn: 209570
|
| |
|
|
|
|
|
|
|
|
|
| |
sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformation in Scalar
Evolution.
That helps SLP-vectorizer to recognize consecutive loads/stores.
<rdar://problem/14860614>
llvm-svn: 209568
|
| |
|
|
|
|
|
|
| |
After the load/store refactoring, we were sometimes trying to feed a
GPR64 into a 32-bit register offset operand. This failed in
copyPhysReg.
llvm-svn: 209566
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In an effort to fix inlined debug info in situations where the out of
line definition of a function preceeds any inlined usage, the order in
which some attributes are added to subprogram DIEs may change. (in
essence, definition-necessary attributes like DW_AT_low_pc/high_pc will
be added immediately, but the names, types, and other features will be
delayed to module end where they may either be added to the subprogram
DIE or instead reference an abstract definition for those values)
These tests can be generalized to be resilient to this change. 5 or so
tests actually have to be incompatibly changed to cope with this
reordering and will go along with the change that affects the order.
llvm-svn: 209554
|
| |
|
|
|
|
|
| |
It's an unnecessary detail for this test and just gets in the way when
making unrelated changes to the output in this test.
llvm-svn: 209553
|
| |
|
|
| |
llvm-svn: 209551
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
same scope as the abstract definition.
This seems like a simple cleanup/improved consistency, but also helps
lay the foundation to fix the bug mentioned in the test case: concrete
definitions preceeding any inlined usage aren't properly split into
concrete + abstract (because they're not known to need it until it's too
late).
Once we start deferring this choice until later, we won't have the
choice to put concrete definitions for inlined subroutines in a
different scope from concrete definitions for non-inlined subroutines
(since we won't know at time-of-construction which one it'll be). This
change brings those two cases into alignment ahead of that future
chaneg/fix.
llvm-svn: 209547
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This is a follow-up to r209358: PR19799: Indvars miscompile due to an
incorrect max backedge taken count from SCEV.
That fix was incomplete as pointed out by Arnold and Michael Z. The
code was also too confusing. It needed a careful rewrite with more
unit tests. This version will also happen to optimize more cases.
<rdar://17005101> PR19799: Indvars miscompile...
llvm-svn: 209545
|
| |
|
|
|
|
| |
This reverts part of commit r209538.
llvm-svn: 209544
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This matches both what we do for the non-thread case and what gcc does.
With this patch clang would match gcc's behaviour in
static __thread int a = 42;
extern __thread int b __attribute__((alias("a")));
int *f(void) { return &a; }
int *g(void) { return &b; }
if not for pr19843. Manually writing the IL does produce the same access modes.
It is also a step in the direction of fixing pr19844.
llvm-svn: 209543
|
| |
|
|
| |
llvm-svn: 209539
|
| |
|
|
| |
llvm-svn: 209538
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Fixed a TODO in r207783.
Add the extracted constant offset using GEP instead of ugly
ptrtoint+add+inttoptr. Using GEP simplifies future optimizations and makes IR
easier to understand.
Updated all affected tests, and added a new test in split-gep.ll to cover a
corner case where emitting uglygep is necessary.
llvm-svn: 209537
|
| |
|
|
| |
llvm-svn: 209528
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add a second fixup table to MipsAsmBackend::getFixupKindInfo() to correctly
position llvm-mc's fixup placeholders for big-endian.
See PR19836 for full details of the issue. To summarize, the fixup placeholders
do not account for endianness properly and the implementations of
getFixupKindInfo() for each target are measuring MCFixupKindInfo.TargetOffset
from different ends of the instruction encoding to compensate.
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3889
llvm-svn: 209514
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
MIPS32r6/MIPS64r6
Summary: Depends on D3872
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3891
llvm-svn: 209513
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.
MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.
mips64-load-store-left-right.ll has been merged into load-store-left-right.ll
The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3872
llvm-svn: 209512
|
| |
|
|
|
|
| |
(smaller than min(8,size)) by making two checks instead of one. This may slowdown some cases, e.g. long long on 32-bit or wide loads produced after loop unrolling. The benefit is higher sencitivity.
llvm-svn: 209508
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some bit-set fields used in ELF file headers in fact contain two parts.
The first one is a regular bit-field. The second one is an enumeraion.
For example ELF header `e_flags` for MIPS target might contain the
following values:
Bit-set values:
EF_MIPS_NOREORDER = 0x00000001
EF_MIPS_PIC = 0x00000002
EF_MIPS_CPIC = 0x00000004
EF_MIPS_ABI2 = 0x00000020
Enumeration:
EF_MIPS_ARCH_32 = 0x50000000
EF_MIPS_ARCH_64 = 0x60000000
EF_MIPS_ARCH_32R2 = 0x70000000
EF_MIPS_ARCH_64R2 = 0x80000000
For printing bit-sets we use the `yaml::IO::bitSetCase()`. It does not
support bit-set/enumeration combinations and prints too many flags from
an enumeration part. This patch fixes this problem. New method
`yaml::IO::maskedBitSetCase()` handle "enumeration" part of bitset
defined by provided mask.
Patch reviewed by Nick Kledzik and Sean Silva.
llvm-svn: 209504
|
| |
|
|
| |
llvm-svn: 209500
|
| |
|
|
|
|
|
|
| |
scopes) in abstract definitions of cross-CU inlined functions
Found by Adrian Prantl during post-commit review of r209335.
llvm-svn: 209498
|
| |
|
|
|
|
|
|
|
|
| |
Rafael correctly pointed out that the restriction is unnecessary. Although the
tests are intended to ensure that we dont abort due to an assertion, running the
tests in all modes is better since it also ensures that we dont crash without
assertions. Always run these tests to ensure that we can handle invalid input
correctly.
llvm-svn: 209496
|
| |
|
|
|
|
| |
with swapped input vectors.
llvm-svn: 209495
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
ScalarEvolution::isKnownPredicate() can wrongly reduce a comparison
when both the LHS and RHS are SCEVAddRecExprs. This checks that both
LHS and RHS are guarded in the case when both are SCEVAddRecExprs.
The test case is against indvars because I could not find a way to
directly test SCEV.
Patch by Sanjay Patel!
llvm-svn: 209487
|
| |
|
|
|
|
|
| |
This allows existing DAG combines to work on them, and then
we can re-match to BFE if necessary during instruction selection.
llvm-svn: 209462
|
| |
|
|
| |
llvm-svn: 209461
|
| |
|
|
| |
llvm-svn: 209460
|
| |
|
|
| |
llvm-svn: 209458
|
| |
|
|
| |
llvm-svn: 209457
|
| |
|
|
| |
llvm-svn: 209456
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch teaches the x86 backend how to efficiently lower ISD::BITCAST dag
nodes from MVT::f64 to MVT::v4i16 (and vice versa), and from MVT::f64 to
MVT::v8i8 (and vice versa).
This patch extends the logic from revision 208107 to also handle MVT::v4i16
and MVT::v8i8. Also, this patch correctly propagates Undef values when
performing the widening of a vector (example: when widening from v2i32 to
v4i32, the upper 64bits of the resulting vector are 'undef').
llvm-svn: 209451
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This adds two new diagnostics: -pass-remarks-missed and
-pass-remarks-analysis. They take the same values as -pass-remarks but
are intended to be triggered in different contexts.
-pass-remarks-missed is used by LLVMContext::emitOptimizationRemarkMissed,
which passes call when they tried to apply a transformation but
couldn't.
-pass-remarks-analysis is used by LLVMContext::emitOptimizationRemarkAnalysis,
which passes call when they want to inform the user about analysis
results.
The patch also:
1- Adds support in the inliner for the two new remarks and a
test case.
2- Moves emitOptimizationRemark* functions to the llvm namespace.
3- Adds an LLVMContext argument instead of making them member functions
of LLVMContext.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3682
llvm-svn: 209442
|
| |
|
|
|
|
| |
Patch by Florian Zeitz
llvm-svn: 209436
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes ARM64 to use separate operands for each component of an
address, and look for separate '[', '$Rn, ..., ']' tokens when
parsing.
This allows us to do away with quite a bit of special C++ code to
handle monolithic "addressing modes" in the MC components. The more
incremental matching of the assembler operands also allows for better
diagnostics when LLVM is presented with invalid input.
Most of the complexity here is with the register-offset instructions,
which were extremely dodgy beforehand: even when the instruction used
wM, LLVM's model had xM as an operand. We papered over this
discrepancy before, but that approach doesn't work now so I split them
into separate X and W variants.
llvm-svn: 209425
|