| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
As disscused in https://bugs.llvm.org/show_bug.cgi?id=43219,
i believe it may be somewhat useful to show //some// aggregates
over all the sea of statistics provided.
Example:
```
Average Wait times (based on the timeline view):
[0]: Executions
[1]: Average time spent waiting in a scheduler's queue
[2]: Average time spent waiting in a scheduler's queue while ready
[3]: Average time elapsed from WB until retire stage
[0] [1] [2] [3]
0. 3 1.0 1.0 4.7 vmulps %xmm0, %xmm1, %xmm2
1. 3 2.7 0.0 2.3 vhaddps %xmm2, %xmm2, %xmm3
2. 3 6.0 0.0 0.0 vhaddps %xmm3, %xmm3, %xmm4
3 3.2 0.3 2.3 <total>
```
I.e. we average the averages.
Reviewers: andreadb, mattd, RKSimon
Reviewed By: andreadb
Subscribers: gbedwell, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68714
llvm-svn: 374361
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Single operand MUL instructions that implicitly set EAX have the following
latency/throughput profile (see below):
imul %cl # latency: 3cy - uOPs: 1 - 1 JMul
imul %cx # latency: 3cy - uOPs: 3 - 3 JMul
imul %ecx # latency: 3cy - uOPs: 2 - 2 JMul
imul %rcx # latency: 6cy - uOPs: 2 - 4 JMul
mul %cl # latency: 3cy - uOPs: 1 - 1 JMul
mul %cx # latency: 3cy - uOPs: 3 - 3 JMul
mul %ecx # latency: 3cy - uOPs: 2 - 2 JMul
mul %rcx # latency: 6cy - uOPs: 2 - 4 JMul
Excluding the 64bit variant, which has a latency of 6cy, every other instruction
has a latency of 3cy. However, the number of decoded macro-opcodes (as well as
the resource cyles) depend on the MUL size.
The two operand MULs have a more predictable profile (see below):
imul %dx, %dx # latency: 3cy - uOPs: 1 - 1 JMul
imul %edx, %edx # latency: 3cy - uOPs: 1 - 1 JMul
imul %rdx, %rdx # latency: 6cy - uOPs: 1 - 4 JMul
imul $3, %dx, %dx # latency: 4cy - uOPs: 2 - 2 JMul
imul $3, %ecx, %ecx # latency: 3cy - uOPs: 1 - 1 JMul
imul $3, %rdx, %rdx # latency: 6cy - uOPs: 1 - 4 JMul
This patch updates the values in the Jaguar scheduling model and regenerates
llvm-mca tests.
Differential Revision: https://reviews.llvm.org/D66547
llvm-svn: 369661
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
generated by the SummaryView.
This patch adds two new fields to the perf report generated by the SummaryView.
Fields are now logically organized into two small groups; only the second group
contains throughput indicators.
Example:
```
Iterations: 100
Instructions: 300
Total Cycles: 414
Total uOps: 700
Dispatch Width: 4
uOps Per Cycle: 1.69
IPC: 0.72
Block RThroughput: 4.0
```
This patch also updates the docs for llvm-mca.
Due to the nature of this change, several tests in the tools/llvm-mca directory
were affected, and had to be updated using script `update_mca_test_checks.py`.
llvm-svn: 340946
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in the Instruction Info View. NFC
This makes easier to identify changes in the instruction info flags. It also
helps spotting potential regressions similar to the one recently introduced at
r336728.
Using the same character to mark MayLoad/MayStore/HasSideEffects is problematic
for llvm-lit. When pattern matching substrings, llvm-lit consumes tabs and
spaces. A change in position of the flag marker may not trigger a test failure.
This patch only changes the character used for flag `hasSideEffects`. The reason
why I didn't touch other flags is because I want to avoid spamming the mailing
because of the massive diff due to the numerous tests affected by this change.
In future, each instruction flag should be associated with a different character
in the Instruction Info View.
llvm-svn: 336797
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
It's super irritating.
[properly configured] git client then complains about that double-newline,
and you have to use `--force` to ignore the warning, since even if you
fix it manually, it will be reintroduced the very next runtime :/
Reviewers: RKSimon, andreadb, courbet, craig.topper, javed.absar, gbedwell
Reviewed By: gbedwell
Subscribers: javed.absar, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D47697
llvm-svn: 333887
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements the "block reciprocal throughput" computation in the
SummaryView.
The block reciprocal throughput is computed as the MAX of:
- NumMicroOps / DispatchWidth
- Resource Cycles / #Units (for every resource consumed).
The block throughput is bounded from above by the hardware dispatch throughput.
That is because the DispatchWidth is an upper bound on how many opcodes can be part
of a single dispatch group.
The block throughput is also limited by the amount of hardware parallelism. The
number of available resource units affects how the resource pressure is
distributed, and also how many blocks can be delivered every cycle.
llvm-svn: 333095
|
|
|
|
|
|
| |
Also, regenerate all tests.
llvm-svn: 332853
|
|
|
|
| |
llvm-svn: 332447
|
|
|
|
|
|
|
|
|
|
|
| |
This script can be used to regenerate tests in the
test/tools/llvm-mca directory (PR36904).
Regenerated a number of tests using the pattern: test/tools/llvm-mca/*/*/*.s
Differential Revision: https://reviews.llvm.org/D45369
llvm-svn: 330246
|
|
ReadAdvance entries.
Before, the instruction builder incorrectly assumed that only explicit reads
could have been associated with ReadAdvance entries.
This patch fixes the issue and adds a test to verify it.
llvm-svn: 328972
|