summaryrefslogtreecommitdiffstats
path: root/llvm/test/tools/llvm-mca/X86/BdVer2
Commit message (Collapse)AuthorAgeFilesLines
* [MCA] Show aggregate over Average Wait times for the whole snippet (PR43219)Roman Lebedev2019-10-1046-0/+68
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: As disscused in https://bugs.llvm.org/show_bug.cgi?id=43219, i believe it may be somewhat useful to show //some// aggregates over all the sea of statistics provided. Example: ``` Average Wait times (based on the timeline view): [0]: Executions [1]: Average time spent waiting in a scheduler's queue [2]: Average time spent waiting in a scheduler's queue while ready [3]: Average time elapsed from WB until retire stage [0] [1] [2] [3] 0. 3 1.0 1.0 4.7 vmulps %xmm0, %xmm1, %xmm2 1. 3 2.7 0.0 2.3 vhaddps %xmm2, %xmm2, %xmm3 2. 3 6.0 0.0 0.0 vhaddps %xmm3, %xmm3, %xmm4 3 3.2 0.3 2.3 <total> ``` I.e. we average the averages. Reviewers: andreadb, mattd, RKSimon Reviewed By: andreadb Subscribers: gbedwell, arphaman, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D68714 llvm-svn: 374361
* [MCA][LSUnit] Track loads and stores until retirement.Andrea Di Biagio2019-10-083-75/+72
| | | | | | | | | | | | | | | | | | | | | | | | | Before this patch, loads and stores were only tracked by their corresponding queues in the LSUnit from dispatch until execute stage. In practice we should be more conservative and assume that memory opcodes leave their queues at retirement stage. Basically, loads should leave the load queue only when they have completed and delivered their data. We conservatively assume that a load is completed when it is retired. Stores should be tracked by the store queue from dispatch until retirement. In practice, stores can only leave the store queue if their data can be written to the data cache. This is mostly a mechanical change. With this patch, the retire stage notifies the LSUnit when a memory instruction is retired. That would triggers the release of LDQ/STQ entries. The only visible change is in memory tests for the bdver2 model. That is because bdver2 is the only model that defines the load/store queue size. This patch partially addresses PR39830. Differential Revision: https://reviews.llvm.org/D68266 llvm-svn: 374034
* [MCA][X86] Add tests for LOCK variants of standard X86 arithmetic opsSimon Pilgrim2019-08-201-1/+382
| | | | | | D66424 adds the base support for LOCK so we should be able to add special case support for all these cases in future patches llvm-svn: 369367
* [X86] Move scheduling tests for CMPXCHG to the corresponding ↵Andrea Di Biagio2019-08-192-41/+14
| | | | | | | | | | resources-x86_64.s files. NFC In D66424 it has been requested to move all the new tests added by r369278 into resources-x86_64.s. That is because only the 8b/16 ops should be tested by resources-cmpxchg.s. This partially reverts r369278. llvm-svn: 369288
* [X86] Added extensive scheduling model tests for all the CMPXCHG variants. NFCAndrea Di Biagio2019-08-191-1/+46
| | | | | | Addresses a review comment in D66424 llvm-svn: 369279
* [X86] Limit vpermil2pd/vpermil2ps immediates to 4 bits in the assembly parser.Craig Topper2019-08-071-6/+6
| | | | | | | | | | The upper 4 bits of the immediate byte are used to encode a register. We need to limit the explicit immediate to fit in the remaining 4 bits. Fixes PR42899. llvm-svn: 368123
* [NFC][X86][MCA] BdVer2: add load-store-throughput testRoman Lebedev2019-06-191-0/+736
| | | | llvm-svn: 363774
* [X86] Add missing properties on llvm.x86.sse.{st,ld}mxcsrClement Courbet2019-06-193-7/+7
| | | | | | | | | | | | | | | | Summary: llvm.x86.sse.stmxcsr only writes to memory. llvm.x86.sse.ldmxcsr only reads from memory, and might generate an FPE. Reviewers: craig.topper, RKSimon Subscribers: llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62896 llvm-svn: 363773
* [NFC][MCA][X86] Add one more 'clear super register' pattern - movss/movsd ↵Roman Lebedev2019-06-151-0/+112
| | | | | | load clears high XMM bits llvm-svn: 363498
* [X86] AMD Piledriver (BdVer2): major cleanup (mainly inverse throughput)Roman Lebedev2019-05-0976-6225/+6230
| | | | | | | | | | | | | | | | I've started this cleanup more several times now, but got sidetracked elsewhere, e.g. by llvm-exegesis problems. Not this time, finally! This is mainly cleaning up the inverse throughput values, and a few latencies/uops, based on the llvm-exegesis measured values. Though this is not complete by any means, there's certainly more cleanup to be done. The performance numbers (i've only checked by RawSpeed benchmark) aren't really surprising - overall this *slightly* (< -1%) improves perf. llvm-svn: 360341
* [X86] Remove the suffix on vcvt[u]si2ss/sd register variants in assembly ↵Craig Topper2019-05-064-24/+24
| | | | | | | | | | | | | | printing. We require d/q suffixes on the memory form of these instructions to disambiguate the memory size. We don't require it on the register forms, but need to support parsing both with and without it. Previously we always printed the d/q suffix on the register forms, but it's redundant and inconsistent with gcc and objdump. After this patch we should support the d/q for parsing, but not print it when its unneeded. llvm-svn: 360085
* [llvm-mca][x86] Fix MMX PMOVMSKB testSimon Pilgrim2019-04-291-3/+3
| | | | | | This is defined as part of SSE1, XMM PMOVMSKB doesn't appear until SSE2 llvm-svn: 359477
* [X86] Make _Int instructions the preferred instructon for the assembly ↵Craig Topper2019-04-101-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | parser and disassembly parser to remove inconsistencies between VEX and EVEX. Many of our instructions have both a _Int form used by intrinsics and a form used by other IR constructs. In the EVEX space the _Int versions usually cover all the capabilities include broadcasting and rounding. While the other version only covers simple register/register or register/load forms. For this reason in EVEX, the non intrinsic form is usually marked isCodeGenOnly=1. In the VEX encoding space we were less consistent, but usually the _Int version was the isCodeGenOnly version. This commit makes the VEX instructions match the EVEX instructions. This was done by manually studying the AsmMatcher table so its possible I missed some cases, but we should be closer now. I'm thinking about using the isCodeGenOnly bit to simplify the EVEX2VEX tablegen code that disambiguates the _Int and non _Int versions. Currently it checks register class sizes and Record the memory operands come from. I have some other changes I was looking into for D59266 that may break the memory check. I had to make a few scheduler hacks to keep the _Int versions from being treated differently than the non _Int version. Differential Revision: https://reviews.llvm.org/D60441 llvm-svn: 358138
* [llvm-mca][scheduler-stats] Print issued micro opcodes per cycle. NFCIAndrea Di Biagio2019-04-083-17/+17
| | | | | | | | | It makes more sense to print out the number of micro opcodes that are issued every cycle rather than the number of instructions issued per cycle. This behavior is also consistent with the dispatch-stats: numbers from the two views can now be easily compared. llvm-svn: 357919
* [X86] AMD Piledriver (BdVer2): fine-tune some latenciesRoman Lebedev2019-03-2812-197/+197
| | | | | | | | | | | | | | Based on llvm-exegesis measurements. Now that llvm-exegesis is ~2 magnitudes faster, and is a bit smarter, it is now possible to continue cleanup of the scheduler model. With this, there are no more latency inconsistencies for the opcodes that produce stable measurements, and only a few inconsistencies for unstable measurements (MMX_* opcodes, opcodes that llvm-exegesis measures by chaining - CMP, TEST, BT, SETcc, CVT, MOV, etc.) llvm-svn: 357169
* [X86] Remove the _alt forms of (V)CMP instructions. Use a combination of ↵Craig Topper2019-03-183-40/+40
| | | | | | | | | | custom printing and custom parsing to achieve the same result and more Similar to previous change done for VPCOM and VPCMP Differential Revision: https://reviews.llvm.org/D59468 llvm-svn: 356384
* [X86] Remove the _alt forms of XOP VPCOM instructions. Use a combination of ↵Craig Topper2019-03-171-32/+32
| | | | | | | | | | | | | | | | | | | | custom printing and custom parsing to achieve the same result and more Previously we had a regular form of the instruction used when the immediate was 0-7. And _alt form that allowed the full 8 bit immediate. Codegen would always use the 0-7 form since the immediate was always checked to be in range. Assembly parsing would use the 0-7 form when a mnemonic like vpcomtrueb was used. If the immediate was specified directly the _alt form was used. The disassembler would prefer to use the 0-7 form instruction when the immediate was in range and the _alt form otherwise. This way disassembly would print the most readable form when possible. The assembly parsing for things like vpcomtrueb relied on splitting the mnemonic into 3 pieces. A "vpcom" prefix, an immediate representing the "true", and a suffix of "b". The tablegenerated printing code would similarly print a "vpcom" prefix, decode the immediate into a string, and then print "b". The _alt form on the other hand parsed and printed like any other instruction with no specialness. With this patch we drop to one form and solve the disassembly printing issue by doing custom printing when the immediate is 0-7. The parsing code has been tweaked to turn "vpcomtrueb" into "vpcomb" and then the immediate for the "true" is inserted either before or after the other operands depending on at&t or intel syntax. I'd rather not do the custom printing, but I tried using an InstAlias for each possible mnemonic for all 8 immediates for all 16 combinations of element size, signedness, and memory/register. The code emitted into printAliasInstr ended up checking the number of operands, the register class of each operand, and the immediate for all 256 aliases. This was repeated for both the at&t and intel printer. Despite a lot of common checks between all of the aliases, when compiled with clang at least this commonality was not well optimized. Nor do all the checks seem necessary. Since I want to do a similar thing for vcmpps/pd/ss/sd which have 32 immediate values and 3 encoding flavors, 3 register sizes, etc. This didn't seem to scale well for clang binary size. So custom printing seemed a better trade off. I also considered just using the InstAlias for the matching and not the printing. But that seemed like it would add a lot of extra rows to the matcher table. Especially given that the 32 immediates for vpcmpps have 46 strings associated with them. Differential Revision: https://reviews.llvm.org/D59398 llvm-svn: 356343
* [llvm-mca][X86] Add ADC/SBB with zero test casesSimon Pilgrim2019-03-061-1/+73
| | | | | | Some targets have fast-path handling for these patterns that we should model. llvm-svn: 355498
* [X86] Print all register forms of x87 fadd/fsub/fdiv/fmul as having two ↵Craig Topper2019-02-041-44/+44
| | | | | | | | | | arguments where on is %st. All of these instructions consume one encoded register and the other register is %st. They either write the result to %st or the encoded register. Previously we printed both arguments when the encoded register was written. And we printed one argument when the result was written to %st. For the stack popping forms the encoded register is always the destination and we didn't print both operands. This was inconsistent with gcc and objdump and just makes the output assembly code harder to read. This patch changes things to always print both operands making us consistent with gcc and objdump. The parser should still be able to handle the single register forms just as it did before. This also matches the GNU assembler behavior. llvm-svn: 353061
* [X86] Print %st(0) as %st when its implicit to the instruction. Continue ↵Craig Topper2019-02-041-42/+42
| | | | | | | | printing it as %st(0) when its encoded in the instruction. This is a step back from the change I made in r352985. This appears to be more consistent with gcc and objdump behavior. llvm-svn: 353015
* Revert r352985 "[X86] Print %st(0) as %st to match what gcc inline asm uses ↵Craig Topper2019-02-041-54/+54
| | | | | | | | | | as the clobber name to make MS inline asm work correctly" Looking into gcc and objdump behavior more this was overly aggressive. If the register is encoded in the instruction we should print %st(0), if its implicit we should print %st. I'll be making a more directed change in a future patch. llvm-svn: 353013
* [X86] Print %st(0) as %st to match what gcc inline asm uses as the clobber ↵Craig Topper2019-02-031-54/+54
| | | | | | | | | | | | | | | | | | | name to make MS inline asm work correctly Summary: When calculating clobbers for MS style inline assembly we fail if the asm clobbers stack top because we print st(0) and try to pass it through the gcc register name check. This was found with when I attempted to make a emms/femms clobber all ST registers. If you use emms/femms in MS inline asm we would try to use st(0) as the clobber name but clang would think that wasn't a valid clobber name. This also matches what objdump disassembly prints. It's also what is printed by gcc -S. Reviewers: RKSimon, rnk, efriedma, spatel, andreadb, lebedev.ri Reviewed By: rnk Subscribers: eraman, gbedwell, lebedev.ri, llvm-commits Differential Revision: https://reviews.llvm.org/D57621 llvm-svn: 352985
* [X86][BdVer2] Transfer delays from the integer to the floating point unit.Roman Lebedev2019-02-017-46/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: I'm unable to find this number in the "AMD SOG for family 15h". llvm-exegesis measures the latencies of these instructions as `2`, which matches the latencies specified in "AMD SOG for family 15h". However if we look at Agner, Microarchitecture, "AMD Bulldozer, Piledriver, Steamroller and Excavator pipeline", "Data delay between different execution domains", the int->ivec transfer is listed as `8`..`10`cy of additional latency. Also, Agner's "Instruction tables", for Piledriver, lists their latencies as `12`, which is consistent with `2cy` from exegesis / AMD SOG + `10cy` transfer delay. Additional data point comes from the fact that Agner's "Instruction tables", for Jaguar, lists their latencies as `8`; and "AMD SOG for family 16h" does state the `+6cy` int->ivec delay, which is consistent with instr latency of `1` or `2`. Reviewers: andreadb, RKSimon, craig.topper Reviewed By: andreadb Subscribers: gbedwell, courbet, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D57300 llvm-svn: 352861
* [NFC][MCA][X86][BdVer2] Cherry-pick int-to-ivec forwarding tests from BtVer2Roman Lebedev2019-01-273-0/+705
| | | | llvm-svn: 352317
* [llvm-mca][X86] Add missing CLWB/CLZERO/FSGSBASE/LWP/MWAITX/RDPID/SHA testsSimon Pilgrim2019-01-221-0/+86
| | | | | | We're getting pretty close to matching/exceeding test coverage of the test\CodeGen\X86\*-schedule.ll files, which should allow us to get rid of -print-schedule and fix PR37160 llvm-svn: 351836
* [llvm-mca][X86] Add missing enter/leave, invlpg/invlpga, rdmsr/wrmsr, rdpmc ↵Simon Pilgrim2019-01-221-1/+33
| | | | | | and rdtsc/rdtscp tests llvm-svn: 351835
* [llvm-mca][X86] Add missing mfence/pinsrw testsSimon Pilgrim2019-01-221-1/+12
| | | | llvm-svn: 351831
* [llvm-mca][X86] Add missing monitor/mwait testsSimon Pilgrim2019-01-221-1/+9
| | | | | | These technically should be under a MONITOR cpuid bit, but we tag them as SSE3 so I've done that here as well. llvm-svn: 351829
* [llvm-mca][X86] Add missing tzcntw testsSimon Pilgrim2019-01-221-1/+8
| | | | llvm-svn: 351827
* [llvm-mca][MC] Add the ability to declare which processor resources model ↵Andrea Di Biagio2018-11-292-89/+89
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | load/store queues (PR36666). This patch adds the ability to specify via tablegen which processor resources are load/store queue resources. A new tablegen class named MemoryQueue can be optionally used to mark resources that model load/store queues. Information about the load/store queue is collected at 'CodeGenSchedule' stage, and analyzed by the 'SubtargetEmitter' to initialize two new fields in struct MCExtraProcessorInfo named `LoadQueueID` and `StoreQueueID`. Those two fields are identifiers for buffered resources used to describe the load queue and the store queue. Field `BufferSize` is interpreted as the number of entries in the queue, while the number of units is a throughput indicator (i.e. number of available pickers for loads/stores). At construction time, LSUnit in llvm-mca checks for the presence of extra processor information (i.e. MCExtraProcessorInfo) in the scheduling model. If that information is available, and fields LoadQueueID and StoreQueueID are set to a value different than zero (i.e. the invalid processor resource index), then LSUnit initializes its LoadQueue/StoreQueue based on the BufferSize value declared by the two processor resources. With this patch, we more accurately track dynamic dispatch stalls caused by the lack of LS tokens (i.e. load/store queue full). This is also shown by the differences in two BdVer2 tests. Stalls that were previously classified as generic SCHEDULER FULL stalls, are not correctly classified either as "load queue full" or "store queue full". About the differences in the -scheduler-stats view: those differences are expected, because entries in the load/store queue are not released at instruction issue stage. Instead, those are released at instruction executed stage. This is the main reason why for the modified tests, the load/store queues gets full before PdEx is full. Differential Revision: https://reviews.llvm.org/D54957 llvm-svn: 347857
* [llvm-mca] pass -dispatch-stats flag to a couple of tests. NFCAndrea Di Biagio2018-11-272-2/+202
| | | | | | | | | | | | | | | | This change is in preparation for a patch that fixes PR36666. llvm-mca currently doesn't know if a buffered processor resource describes a load or store queue. So, any dynamic dispatch stall caused by the lack of load/store queue entries is normally reported as a generic SCHEDULER stall. See for example the -dispatch-stats output from the two tests modified by this patch. In future, processor models will be able to tag processor resources that are used to describe load/store queues. That information would then be used by llvm-mca to correctly classify dynamic dispatch stalls caused by the lack of tokens in the LS. llvm-svn: 347662
* [llvm-mca][View] Improved Retire Control Unit Statistics.Andrea Di Biagio2018-11-231-0/+4
| | | | | | | | | | | | | | | | | | | | | RetireControlUnitStatistics now reports extra information about the ROB and the avg/maximum number of entries consumed over the entire simulation. Example: Retire Control Unit - number of cycles where we saw N instructions retired: [# retired], [# cycles] 0, 109 (17.9%) 1, 102 (16.7%) 2, 399 (65.4%) Total ROB Entries: 64 Max Used ROB Entries: 35 ( 54.7% ) Average Used ROB Entries per cy: 32 ( 50.0% ) Documentation in llvm/docs/CommandGuide/llvmn-mca.rst has been updated to reflect this change. llvm-svn: 347493
* [llvm-mca] Correctly update the resource strategy for processor resources ↵Andrea Di Biagio2018-11-1221-125/+125
| | | | | | | | | | | | | | | | | | | | | | | with multiple units. When looking at the tests committed by Roman at r346587, I noticed that numbers reported by the resource pressure for PdAGU01 were wrong. In particular, according to the aut-generated CHECK lines in tests memcpy-like-test.s and store-throughput.s, resource pressure for PdAGU01 was not uniformly distributed among the two AGEN pipes. It turns out that the reason why pressure was not correctly distributed, was because the "resource selection strategy" object associated with PdAGU01 was not correctly updated on the event of AGEN pipe used. As a result, llvm-mca was not simulating a round-robin pipeline allocation for PdAGU01. Instead, PdAGU1 was always prioritized over PdAGU0. This patch fixes the issue; now processor resource strategy objects for resources declaring multiple units, are correctly notified in the event of "resource used". llvm-svn: 346650
* [X86][BdVer2] Fix loads/stores throughput for Piledriver (PR39465)Roman Lebedev2018-11-1065-3806/+4046
| | | | | | | | | | | | | There are two AGU units, and per 1cy, there can be either two loads, or a load and a store; but not two stores, or two loads and a store. Additionally, loads shouldn't affect the store scheduler and vice versa. (but *should* affect the PdEX scheduler.) Required rL346545. Fixes https://bugs.llvm.org/show_bug.cgi?id=39465 llvm-svn: 346587
* [NFC][BdVer2] Load and store throughput tests: also check sched stats (PR39465)Roman Lebedev2018-11-082-2/+240
| | | | | | | | As noted by Andrea Di Biagio in https://bugs.llvm.org/show_bug.cgi?id=39465 both the loads and stores occupy both the store and load queues. This is clearly wrong. llvm-svn: 346425
* [NFC][BdVer2] Tests for load and store throughput (PR39465)Roman Lebedev2018-11-082-0/+1209
| | | | | | | | | | | | | | | | During review it was noted that while it appears that the Piledriver can do two [consecutive] loads per cycle, it can only do one store per cycle. It was suggested that the sched model incorrectly models that, but it was opted to fix this afterwards. These tests show that the two consecutive loads are modelled correctly, and one consecutive stores is not modelled incorrectly. Unless i'm missing the point. https://bugs.llvm.org/show_bug.cgi?id=39465 llvm-svn: 346404
* AMD BdVer2 (Piledriver) Initial Scheduler modelRoman Lebedev2018-10-2778-8414/+9341
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: # Overview This is somewhat partial. * Latencies are good {F7371125} * All of these remaining inconsistencies //appear// to be noise/noisy/flaky. * NumMicroOps are somewhat good {F7371158} * Most of the remaining inconsistencies are from `Ld` / `Ld_ReadAfterLd` classes * Actual unit occupation (pipes, `ResourceCycles`) are undiscovered lands, i did not really look there. They are basically verbatum copy from `btver2` * Many `InstRW`. And there are still inconsistencies left... To be noted: I think this is the first new schedule profile produced with the new next-gen tools like llvm-exegesis! # Benchmark I realize that isn't what was suggested, but i'll start with some "internal" public real-world benchmark i understand - [[ https://github.com/darktable-org/rawspeed | RawSpeed raw image decoding library ]]. Diff (the exact clang from trunk without/with this patch): ``` Comparing /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench to /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench Benchmark Time CPU Time Old Time New CPU Old CPU New ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_mean -0.0607 -0.0604 234 219 233 219 Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_median -0.0630 -0.0626 233 219 233 219 Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_stddev +0.2581 +0.2587 1 2 1 2 Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_mean -0.0770 -0.0767 144 133 144 133 Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_median -0.0767 -0.0763 144 133 144 133 Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_stddev -0.4170 -0.4156 1 0 1 0 Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_mean -0.0271 -0.0270 463 450 463 450 Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_median -0.0093 -0.0093 453 449 453 449 Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_stddev -0.7280 -0.7280 13 4 13 4 Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_pvalue 0.0004 0.0004 U Test, Repetitions: 25 vs 25 Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_mean -0.0065 -0.0065 569 565 569 565 Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_median -0.0077 -0.0077 569 564 569 564 Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_stddev +1.0077 +1.0068 2 5 2 5 Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_pvalue 0.0220 0.0199 U Test, Repetitions: 25 vs 25 Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_mean +0.0006 +0.0007 312 312 312 312 Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_median +0.0031 +0.0032 311 312 311 312 Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_stddev -0.7069 -0.7072 4 1 4 1 Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_pvalue 0.0004 0.0004 U Test, Repetitions: 25 vs 25 Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_mean -0.0015 -0.0015 141 141 141 141 Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_median -0.0010 -0.0011 141 141 141 141 Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_stddev -0.1486 -0.1456 0 0 0 0 Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_pvalue 0.6139 0.8766 U Test, Repetitions: 25 vs 25 Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_mean -0.0008 -0.0005 60 60 60 60 Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_median -0.0006 -0.0002 60 60 60 60 Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_stddev -0.1467 -0.1390 0 0 0 0 Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_pvalue 0.0137 0.0137 U Test, Repetitions: 25 vs 25 Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_mean +0.0002 +0.0002 275 275 275 275 Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_median -0.0015 -0.0014 275 275 275 275 Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_stddev +3.3687 +3.3587 0 2 0 2 Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_pvalue 0.4041 0.3933 U Test, Repetitions: 25 vs 25 Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_mean +0.0004 +0.0004 67 67 67 67 Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_median -0.0000 -0.0000 67 67 67 67 Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_stddev +0.1947 +0.1995 0 0 0 0 Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_pvalue 0.0074 0.0001 U Test, Repetitions: 25 vs 25 Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_mean -0.0092 +0.0074 547 542 25 25 Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_median -0.0054 +0.0115 544 541 25 25 Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_stddev -0.4086 -0.3486 8 5 0 0 Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_pvalue 0.3320 0.0000 U Test, Repetitions: 25 vs 25 Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_mean +0.0015 +0.0204 218 218 12 12 Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_median +0.0001 +0.0203 218 218 12 12 Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_stddev +0.2259 +0.2023 1 1 0 0 GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_pvalue 0.0000 0.0001 U Test, Repetitions: 25 vs 25 GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_mean -0.0209 -0.0179 96 94 90 88 GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_median -0.0182 -0.0155 95 93 90 88 GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_stddev -0.6164 -0.2703 2 1 2 1 Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_mean -0.0098 -0.0098 176 175 176 175 Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_median -0.0126 -0.0126 176 174 176 174 Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_stddev +6.9789 +6.9157 0 2 0 2 Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_mean -0.0237 -0.0238 474 463 474 463 Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_median -0.0267 -0.0267 473 461 473 461 Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_stddev +0.7179 +0.7178 3 5 3 5 Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_pvalue 0.6837 0.6554 U Test, Repetitions: 25 vs 25 Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_mean -0.0014 -0.0013 1375 1373 1375 1373 Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_median +0.0018 +0.0019 1371 1374 1371 1374 Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_stddev -0.7457 -0.7382 11 3 10 3 Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_mean -0.0080 -0.0289 22 22 10 10 Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_median -0.0070 -0.0287 22 22 10 10 Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_stddev +1.0977 +0.6614 0 0 0 0 Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_mean +0.0132 +0.0967 35 36 10 11 Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_median +0.0132 +0.0956 35 36 10 11 Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_stddev -0.0407 -0.1695 0 0 0 0 Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_mean +0.0331 +0.1307 13 13 6 6 Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_median +0.0430 +0.1373 12 13 6 6 Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_stddev -0.9006 -0.8847 1 0 0 0 Pentax/645Z/IMGP2837.PEF/threads:8/real_time_pvalue 0.0016 0.0010 U Test, Repetitions: 25 vs 25 Pentax/645Z/IMGP2837.PEF/threads:8/real_time_mean -0.0023 -0.0024 395 394 395 394 Pentax/645Z/IMGP2837.PEF/threads:8/real_time_median -0.0029 -0.0030 395 394 395 393 Pentax/645Z/IMGP2837.PEF/threads:8/real_time_stddev -0.0275 -0.0375 1 1 1 1 Phase One/P65/CF027310.IIQ/threads:8/real_time_pvalue 0.0232 0.0000 U Test, Repetitions: 25 vs 25 Phase One/P65/CF027310.IIQ/threads:8/real_time_mean -0.0047 +0.0039 114 113 28 28 Phase One/P65/CF027310.IIQ/threads:8/real_time_median -0.0050 +0.0037 114 113 28 28 Phase One/P65/CF027310.IIQ/threads:8/real_time_stddev -0.0599 -0.2683 1 1 0 0 Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_mean +0.0206 +0.0207 405 414 405 414 Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_median +0.0204 +0.0205 405 414 405 414 Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_stddev +0.2155 +0.2212 1 1 1 1 Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_mean -0.0109 -0.0108 147 145 147 145 Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_median -0.0104 -0.0103 147 145 147 145 Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_stddev -0.4919 -0.4800 0 0 0 0 Samsung/NX3000/_3184416.SRW/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25 Samsung/NX3000/_3184416.SRW/threads:8/real_time_mean -0.0149 -0.0147 220 217 220 217 Samsung/NX3000/_3184416.SRW/threads:8/real_time_median -0.0173 -0.0169 221 217 220 217 Samsung/NX3000/_3184416.SRW/threads:8/real_time_stddev +1.0337 +1.0341 1 3 1 3 Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_pvalue 0.0001 0.0001 U Test, Repetitions: 25 vs 25 Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_mean -0.0019 -0.0019 194 193 194 193 Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_median -0.0021 -0.0021 194 193 194 193 Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_stddev -0.4441 -0.4282 0 0 0 0 Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_pvalue 0.0000 0.4263 U Test, Repetitions: 25 vs 25 Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_mean +0.0258 -0.0006 81 83 19 19 Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_median +0.0235 -0.0011 81 82 19 19 Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_stddev +0.1634 +0.1070 1 1 0 0 ``` {F7443905} If we look at the `_mean`s, the time column, the biggest win is `-7.7%` (`Canon/EOS 5D Mark II/10.canon.sraw2.cr2`), and the biggest loose is `+3.3%` (`Panasonic/DC-GH5S/P1022085.RW2`); Overall: mean `-0.7436%`, median `-0.23%`, `cbrt(sum(time^3))` = `-8.73%` Looks good so far i'd say. llvm-exegesis details: {F7371117} {F7371125} {F7371128} {F7371144} {F7371158} Reviewers: craig.topper, RKSimon, andreadb, courbet, avt77, spatel, GGanesh Reviewed By: andreadb Subscribers: javed.absar, gbedwell, jfb, llvm-commits Differential Revision: https://reviews.llvm.org/D52779 llvm-svn: 345463
* [NFC][X86] Baseline tests for AMD BdVer2 (Piledriver) Scheduler modelRoman Lebedev2018-10-2778-0/+15689
Adding the baseline tests in a preparatory NFC commit, so that the actual commit shows the *diff*. Yes, i'm aware that a few of these codegen-based sched tests are testing wrong instructions, i will fix that afterwards. For https://reviews.llvm.org/D52779 llvm-svn: 345462
OpenPOWER on IntegriCloud