| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
|
| |
|
|
| |
llvm-svn: 281270
|
| |
|
|
| |
llvm-svn: 281248
|
| |
|
|
| |
llvm-svn: 281247
|
| |
|
|
|
|
| |
isSignBitCheck could be changed to take a pointer param to avoid the 'UnusedBit' ugliness.
llvm-svn: 281231
|
| |
|
|
|
|
|
|
|
|
|
| |
Trying to infer the 'returned' attribute if an argument is already
'returned' can lead to verification failure: inference might determine
that a different argument is passed through which would result in two
different arguments marked as 'returned'.
This fixes PR30350.
llvm-svn: 281221
|
| |
|
|
| |
llvm-svn: 281219
|
| |
|
|
| |
llvm-svn: 281186
|
| |
|
|
| |
llvm-svn: 281185
|
| |
|
|
|
|
|
|
| |
This should *actually* fix PR30244. This cranks up the workaround for PR30188 so that we never sink loads or stores of allocas.
The idea is that these should be removed by SROA/Mem2Reg, and any movement of them may well confuse SROA or just cause unwanted code churn. It's not ideal that the midend should be crippled like this, but that unwanted churn can really cause significant regressions in important workloads (tsan).
llvm-svn: 281162
|
| |
|
|
|
|
|
|
|
|
|
|
| |
during sinking
Exposed by PR30244, we will split a block currently if we think we can sink at least one instruction. However this isn't right - the reason we split predecessors is so that we can sink instructions that otherwise couldn't be sunk because it isn't safe to do so - stores, for example.
So, change the heuristic to only split if it thinks it can sink at least one non-speculatable instruction.
Should fix PR30244.
llvm-svn: 281160
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This will let e.g. the load/store vectorizer propagate this metadata
appropriately.
Reviewers: arsenm
Subscribers: tra, jholewinski, hfinkel, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23479
llvm-svn: 281153
|
| |
|
|
|
|
|
|
|
| |
This generates invalid IR: the only users of swifterror can be call
arguments, loads, and stores.
rdar://28242257
llvm-svn: 281144
|
| |
|
|
|
|
|
|
|
| |
This would create a bitcast use which fails the verifier: swifterror values may
only be used by loads, stores, and as function arguments.
rdar://28233244
llvm-svn: 281114
|
| |
|
|
|
|
|
| |
If the unaligned access has a dynamic offset, it may be odd which
would make the adjusted alignment incorrect to use.
llvm-svn: 281110
|
| |
|
|
|
|
| |
vectors
llvm-svn: 281107
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Widening load in GVN is too early because it will block other optimizations like PRE, LICM.
https://llvm.org/bugs/show_bug.cgi?id=29110
The SPECCPU2006 benchmark impact of this patch:
Reference: o2_nopatch
(1): o2_patched
Benchmark Base:Reference (1)
-------------------------------------------------------
spec/2006/fp/C++/444.namd 25.2 -0.08%
spec/2006/fp/C++/447.dealII 45.92 +1.05%
spec/2006/fp/C++/450.soplex 41.7 -0.26%
spec/2006/fp/C++/453.povray 35.65 +1.68%
spec/2006/fp/C/433.milc 23.79 +0.42%
spec/2006/fp/C/470.lbm 41.88 -1.12%
spec/2006/fp/C/482.sphinx3 47.94 +1.67%
spec/2006/int/C++/471.omnetpp 22.46 -0.36%
spec/2006/int/C++/473.astar 21.19 +0.24%
spec/2006/int/C++/483.xalancbmk 36.09 -0.11%
spec/2006/int/C/400.perlbench 33.28 +1.35%
spec/2006/int/C/401.bzip2 22.76 -0.04%
spec/2006/int/C/403.gcc 32.36 +0.12%
spec/2006/int/C/429.mcf 41.04 -0.41%
spec/2006/int/C/445.gobmk 26.94 +0.04%
spec/2006/int/C/456.hmmer 24.5 -0.20%
spec/2006/int/C/458.sjeng 28 -0.46%
spec/2006/int/C/462.libquantum 55.25 +0.27%
spec/2006/int/C/464.h264ref 45.87 +0.72%
geometric mean +0.23%
For most benchmarks, it's a wash, but we do see stable improvements on some benchmarks, e.g. 447,453,482,400.
Reviewers: davidxl, hfinkel, dberlin, sanjoy, reames
Subscribers: gberry, junbuml
Differential Revision: https://reviews.llvm.org/D24096
llvm-svn: 281074
|
| |
|
|
|
|
|
| |
I was looking to fix a bug in getComplexity(), and these cases showed up as
obvious failures. I'm not sure how to find these in general though.
llvm-svn: 281055
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If one of the uses of the value is a single edge PHINode, handle it.
Original:
%val = something
<suspend>
%p = PHINode [%val]
After Spill + Part13:
%val = something
%slot = gep val.spill.slot
store %val, %slot
<suspend>
%p = load %slot
Plus tiny fixes/changes:
* use correct index for coro.free in CoroCleanup
* fixup id parameter in coro.free to allow authoring coroutine in plain C with __builtins
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24242
llvm-svn: 281020
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: The hoisted instruction is executed speculatively. It could affect the debugging experience as user would see gdb go into code that may not be expected to execute. It will also affect sample profile accuracy by assigning incorrect frequency to source within then/else branch.
Reviewers: davidxl, dblaikie, chandlerc, kcc, echristo
Subscribers: mehdi_amini, probinson, eric_niebler, andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D24164
llvm-svn: 280995
|
| |
|
|
| |
llvm-svn: 280993
|
| |
|
|
|
|
|
|
|
|
|
| |
The test case included in r280979 wasn't checking what it was supposed to be
checking for the predicated store case. Fixing the test revealed that the
multi-use case (when a pointer is used by both vectorized and scalarized memory
accesses) wasn't being handled properly. We can't skip over
non-consecutive-like pointers since they may have looked consecutive-like with
a different memory access.
llvm-svn: 280992
|
| |
|
|
| |
llvm-svn: 280991
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, all consecutive pointers were marked uniform after vectorization.
However, if a consecutive pointer is used by a memory access that is eventually
scalarized, the pointer won't remain uniform after all. An example is
predicated stores. Even though a predicated store may be consecutive, it will
still be scalarized, making it's pointer operand non-uniform.
This patch updates the logic in collectLoopUniforms to consider the cases where
a memory access may be scalarized. If a memory access may be scalarized, its
pointer operand is not marked uniform. The determination of whether a given
memory instruction will be scalarized or not has been moved into a common
function that is used by the vectorizer, cost model, and legality analysis.
Differential Revision: https://reviews.llvm.org/D24271
llvm-svn: 280979
|
| |
|
|
| |
llvm-svn: 280963
|
| |
|
|
| |
llvm-svn: 280960
|
| |
|
|
| |
llvm-svn: 280959
|
| |
|
|
| |
llvm-svn: 280957
|
| |
|
|
|
|
|
|
|
|
| |
epilogues."
This reverts commit r280901.
This caused a bunch of failures, reverting it until I investigate them.
llvm-svn: 280905
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When cloning blocks for prologue/epilogue we need to replicate the loop
structure from the original loop. It wasn't a problem for the innermost
loops, but it led to an incorrect loop info when we unrolled a loop with
a child loop - in this case created prologue-loop had a child loop, but
loop info didn't reflect that.
This fixes PR28888.
Reviewers: chandlerc, sanjoy, hfinkel
Subscribers: llvm-commits, silvas
Differential Revision: https://reviews.llvm.org/D24203
llvm-svn: 280901
|
| |
|
|
|
|
| |
splat constant vectors
llvm-svn: 280873
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can't create metadata-valued PHIs; don't try to do so when sinking.
I created a test case for this using the @llvm.type.test intrinsic, because it
takes a metadata parameter and does not have severe side effects (thus
SimplifyCFG is willing to otherwise sink it).
Previously, running the test case would crash with:
Invalid use of metadata!
%.sink = select i1 %flag, metadata <...>, metadata <0x4e45dc0>
LLVM ERROR: Broken function found, compilation aborted!
llvm-svn: 280866
|
| |
|
|
|
|
|
|
| |
This is a revert of r280676 which was a revert of r280637;
ie, this is r280637 again. It was speculatively reverted to
help debug buildbot failures.
llvm-svn: 280861
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
LSV replaces multiple adjacent loads with one vectorized load and a
bunch of extractelement instructions. This patch makes the
extractelement instructions' names match those of the original loads,
for (hopefully) improved readability.
Reviewers: asbirlea, tstellarAMD
Subscribers: arsenm, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23748
llvm-svn: 280818
|
| |
|
|
|
|
|
| |
Two tests have been merged together, regenerated and then moved to
a more appropriate directory. No functional change.
llvm-svn: 280814
|
| |
|
|
|
|
|
|
|
|
|
| |
logic.
This fixes a similar issue to the one already fixed by r280804
(revieved in D24256). Revision 280804 fixed the problem with unsafe dyn_casts
in the extrq/extrqi combining logic. However, it turns out that even the
insertq/insertqi logic was affected by the same problem.
llvm-svn: 280807
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
operands of extrq/extrqi intrinsic calls.
This patch fixes an assertion failure caused by unsafe dynamic casts on the
constant operands of sse4a intrinsic calls to extrq/extrqi
The combine logic that simplifies sse4a extrq/extrqi intrinsic calls currently
checks if the input operands are constants. Internally, that logic relies on
dyn_casts of values returned by calls to method Constant::getAggregateElement.
However, method getAggregateElemet may return nullptr if the constant element
cannot be retrieved. So, all the dyn_casts can potentially fail. This is what
happens for example if a constexpr value is passed in input to an extrq/extrqi
intrinsic call.
This patch fixes the problem by using a dyn_cast_or_null (instead of a simple
dyn_cast) on the result of each call to Constant::getAggregateElement.
Added reproducible test cases to x86-sse4a.ll.
Differential Revision: https://reviews.llvm.org/D24256
llvm-svn: 280804
|
| |
|
|
|
|
|
|
| |
I should have realised this the first time around, but if we're avoiding sinking stores where the operands come from allocas so they don't create selects, we also have to do the same for loads because SROA will be just as defective looking at loads of selected addresses as stores.
Fixes PR30188 (again).
llvm-svn: 280792
|
| |
|
|
|
|
|
|
| |
PR30292 showed a case where our PHI checking wasn't correct. We were checking that all values were used by the same PHI before deciding to sink, but we weren't checking that the incoming values for that PHI were what we expected. As a result, we had to bail out after block splitting which caused us to never reach a steady state in SimplifyCFG.
Fixes PR30292.
llvm-svn: 280790
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
had PGO info
Currently the pass updates branch weights in the IR if the function has
any PGO info (entry frequency is set). However we could still have
regions of the CFG that does not have branch weights collected (e.g. a
cold region). In this case we'd use static estimates. Since static
estimates for branches are determined independently, they are
inconsistent. Updating them can "randomly" inflate block frequencies.
I've run into this in a completely cold loop of h264ref from
SPEC. -Rpass-with-hotness showed the loop to be completely cold during
inlining (before JT) but completely hot during vectorization (after JT).
The new testcase demonstrate the problem. We check array elements
against 1, 2 and 3 in a loop. The check against 3 is the loop-exiting
check. The block names should be self-explanatory.
In this example, jump threading incorrectly updates the weight of the
loop-exiting branch to 0, drastically inflating the frequency of the
loop (in the range of billions).
There is no run-time profile info for edges inside the loop, so branch
probabilities are estimated. These are the resulting branch and block
frequencies for the loop body:
check_1 (16)
(8) / |
eq_1 | (8)
\ |
check_2 (16)
(8) / |
eq_2 | (8)
\ |
check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
First we thread eq_1 -> check_2 to check_3. Frequencies are updated to
remove the frequency of eq_1 from check_2 and then from the false edge
leaving check_2. Changed frequencies are highlighted with * *:
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
\ eq_2 | (*0*)
\ \ |
` --- check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
Next we thread eq_1 -> check_3 and eq_2 -> check_3 to check_1 as new
back edges. Frequencies are updated to remove the frequency of eq_1 and
eq_3 from check_3 and then the false edge leaving check_3 (changed
frequencies are highlighted with * *):
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
/-- eq_2~ | (*0*)
(back edge) |
check_3 (*0*)
(*0*) / |
(loop exit) | (*0*)
|
(back edge)
As a result, the loop exit edge ends up with 0 frequency which in turn makes
the loop header to have maximum frequency.
There are a few potential problems here:
1. The profile data seems odd. There is a single profile sample of the
loop being entered. On the other hand, there are no weights inside the
loop.
2. Based on static estimation we shouldn't set edges to "extreme"
values, i.e. extremely likely or unlikely.
3. We shouldn't create profile metadata that is calculated from static
estimation. I am not sure what policy is but it seems to make sense to
treat profile metadata as something that is known to originate from
profiling. Estimated probabilities should only be reflected in BPI/BFI.
Any one of these would probably fix the immediate problem. I went for 3
because I think it's a good policy to have and added a FIXME about 2.
Differential Revision: https://reviews.llvm.org/D24118
llvm-svn: 280713
|
| |
|
|
|
|
|
| |
The script (utils/update_test_checks.py) seems to have problems
with variable names that start with the same string.
llvm-svn: 280679
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Move early uses of spilled variables after CoroBegin.
For example, if a parameter had address taken, we may end up with the code
like:
define @f(i32 %n) {
%n.addr = alloca i32
store %n, %n.addr
...
call @coro.begin
This patch fixes the problem by moving uses of spilled variables after CoroBegin.
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24234
llvm-svn: 280678
|
| |
|
|
|
|
|
|
|
|
| |
This is effectively a revert of:
https://reviews.llvm.org/rL280115
And this should fix
https://llvm.org/bugs/show_bug.cgi?id=30281:
llvm-svn: 280677
|
| |
|
|
|
|
| |
http://lab.llvm.org:8011/builders/clang-cmake-armv7-a15/builds/14952/steps/ninja%20check%201/logs/FAIL%3A%20LLVM%3A%3Aicmp.ll
llvm-svn: 280676
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This test code previously caused a failure in the module verifier,
because SimplifyCFG created this invalid instruction, which tries to
take the address of inline asm:
%.sink = select i1 %1, i64 ()* asm "mov $0, #1", "=r", i64 ()* asm %"mov $0, #2", "=r"
This has been fixed recently, presumably by James Molloy's patches that
re-wrote and changed parts of SimplifyCFG, so this patch just adds a
regression test for it.
Differential Revision: https://reviews.llvm.org/D24231
llvm-svn: 280660
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A frontend may designate a particular suspend to be final, by setting the second argument of the coro.suspend intrinsic to true. Such a suspend point has two properties:
* it is possible to check whether a suspended coroutine is at the final suspend point via coro.done intrinsic;
* a resumption of a coroutine stopped at the final suspend point leads to undefined behavior. The only possible action for a coroutine at a final suspend point is destroying it via coro.destroy intrinsic.
This patch adds final suspend handling logic to CoroEarly and CoroSplit passes.
Now, the final suspend point example from docs\Coroutines.rst compiles and produces expected result (see test/Transform/Coroutines/ex5.ll).
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24068
llvm-svn: 280646
|
| |
|
|
|
|
|
|
| |
The code to calculate 'UsesRemoved' could be simplified.
As-is, that code is a victim of PR30273:
https://llvm.org/bugs/show_bug.cgi?id=30273
llvm-svn: 280637
|
| |
|
|
|
|
|
|
|
|
|
|
| |
memcpy with ld/st.
When InstCombine replaces a memcpy with loads+stores it does not copy over the
llvm.mem.parallel_loop_access from the memcpy instruction. This patch fixes
that.
Differential Revision: https://reviews.llvm.org/D23499
llvm-svn: 280617
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The inliner may need to determine where a given funclet unwinds to,
and this determination may depend on other funclets throughout the
funclet tree. The code that performs this walk in getUnwindDestToken
memoizes results to avoid redundant computations. In the case that
a funclet's unwind destination is derived from its ancestor, there's
code to walk back down the tree from the ancestor updating the memo
map of its descendants to record the unwind destination. This change
fixes that code to account for the case that some descendant has a
different unwind destination, which can happen if that unwind dest
is a descendant of the EHPad being queried and thus didn't determine
its unwind destination.
Also update test inline-funclets.ll, which is supposed to cover such
scenarios, to include a case that fails an assertion without this fix
but passes with it.
Fixes PR29151.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24117
llvm-svn: 280610
|
| |
|
|
|
|
|
| |
This allows more of the OCML builtin library to be
constant folded.
llvm-svn: 280586
|