| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
textual format
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
|
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Records in the module summary index whether the bitcode was compiled
with the option necessary to enable splitting the LTO unit
(e.g. -fsanitize=cfi, -fwhole-program-vtables, or -fsplit-lto-unit).
The information is passed down to the ModuleSummaryIndex builder via a
new module flag "EnableSplitLTOUnit", which is propagated onto a flag
on the summary index.
This is then used during the LTO link to check whether all linked
summaries were built with the same value of this flag. If not, an error
is issued when we detect a situation requiring whole program visibility
of the class hierarchy. This is the case when both of the following
conditions are met:
1) We are performing LowerTypeTests or Whole Program Devirtualization.
2) There are type tests or type checked loads in the code.
Note I have also changed the ThinLTOBitcodeWriter to also gate the
module splitting on the value of this flag.
Reviewers: pcc
Subscribers: ormris, mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53890
llvm-svn: 350948
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Emit summaries for bitcode modules that are only destined for the
regular LTO portion of the build so they can participate in
summary-based dead stripping.
This change reduces the size of a nacl_helper build with cfi-icall
enabled by 7%, removing the majority of the overhead due to enabling
cfi-icall. The cfi-icall size increase was caused by compiling in lots
of unused code and cfi-icall generating jumptable references to unused
symbols that could no longer be removed by -Wl,-gc-sections. Increasing
the visibility of summary-based dead stripping prevented jumptable
entries being created for unused symbols from the regular LTO portion
of the build.
Reviewers: pcc
Reviewed By: pcc
Subscribers: dschuff, mehdi_amini, inglorion, eraman, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D47594
llvm-svn: 333768
|
|
|
|
|
|
|
|
|
|
|
| |
It is possible for two modules to define the same set of external
symbols without causing a duplicate symbol error at link time,
as long as each of the symbols is a comdat member. So we cannot
use them as part of a unique id for the module.
Differential Revision: https://reviews.llvm.org/D38602
llvm-svn: 315026
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The cumulative size of the bitcode files for a very large application
can be huge, particularly with -g. In a distributed build environment,
all of these files must be sent to the remote build node that performs
the thin link step, and this can exceed size limits.
The thin link actually only needs the summary along with a bitcode
symbol table. Until we have a proper bitcode symbol table, simply
stripping the debug metadata results in significant size reduction.
Add support for an option to additionally emit minimized bitcode
modules, just for use in the thin link step, which for now just strips
all debug metadata. I plan to add a cc1 option so this can be invoked
easily during the compile step.
However, care must be taken to ensure that these minimized thin link
bitcode files produce the same index as with the original bitcode files,
as these original bitcode files will be used in the backends.
Specifically:
1) The module hash used for caching is typically produced by hashing the
written bitcode, and we want to include the hash that would correspond
to the original bitcode file. This is because we want to ensure that
changes in the stripped portions affect caching. Added plumbing to emit
the same module hash in the minimized thin link bitcode file.
2) The module paths in the index are constructed from the module ID of
each thin linked bitcode, and typically is automatically generated from
the input file path. This is the path used for finding the modules to
import from, and obviously we need this to point to the original bitcode
files. Added gold-plugin support to take a suffix replacement during the
thin link that is used to override the identifier on the MemoryBufferRef
constructed from the loaded thin link bitcode file. The assumption is
that the build system can specify that the minimized bitcode file has a
name that is similar but uses a different suffix (e.g. out.thinlink.bc
instead of out.o).
Added various tests to ensure that we get identical index files out of
the thin link step.
Reviewers: mehdi_amini, pcc
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31027
llvm-svn: 298638
|
|
This pass prepares a module containing type metadata for ThinLTO by splitting
it into regular and thin LTO parts if possible, and writing both parts to
a multi-module bitcode file. Modules that do not contain type metadata are
written unmodified as a single module.
All globals with type metadata are added to the regular LTO module, and
the rest are added to the thin LTO module.
Differential Revision: https://reviews.llvm.org/D27324
llvm-svn: 289899
|