summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/SimplifyCFG/2008-05-16-PHIBlockMerge.ll
Commit message (Collapse)AuthorAgeFilesLines
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+131
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-131/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* [SimlifyCFG] Prevent passes from destroying canonical loop structure, ↵Hyojin Sung2016-03-291-16/+16
| | | | | | | | | | | | | | | | | especially for nested loops When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes is currently used to recognize potential loops of which the block is the header and keep the block. However, the current algorithm fails if the loops' exit condition is evaluated only with volatile values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested loop, the loop is collapsed into a single loop which prevent later optimizations from being applied (e.g., transforming nested loops into simplified forms and loop vectorization). The patch augments the existing PHI node-based check by adding a pre-test if the BB actually belongs to a set of loop headers and not eliminating it if yes. llvm-svn: 264697
* Revert "[SimlifyCFG] Prevent passes from destroying canonical loop ↵Reid Kleckner2016-03-281-16/+16
| | | | | | | | | | structure, especially for nested loops" This reverts commit r264596. It does not compile. llvm-svn: 264604
* [SimlifyCFG] Prevent passes from destroying canonical loop structure, ↵Hyojin Sung2016-03-281-16/+16
| | | | | | | | | | | | | | | | especially for nested loops When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes is currently used to recognize potential loops of which the block is the header and keep the block. However, the current algorithm fails if the loops' exit condition is evaluated only with volatile values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested loop, the loop is collapsed into a single loop which prevent later optimizations from being applied (e.g., transforming nested loops into simplified forms and loop vectorization). The patch augments the existing PHI node-based check by adding a pre-test if the BB actually belongs to a set of loop headers and not eliminating it if yes. llvm-svn: 264596
* Convert all tests using TCL-style quoting to use shell-style quoting.Chandler Carruth2012-07-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | This was done through the aid of a terrible Perl creation. I will not paste any of the horrors here. Suffice to say, it require multiple staged rounds of replacements, state carried between, and a few nested-construct-parsing hacks that I'm not proud of. It happens, by luck, to be able to deal with all the TCL-quoting patterns in evidence in the LLVM test suite. If anyone is maintaining large out-of-tree test trees, feel free to poke me and I'll send you the steps I used to convert things, as well as answer any painful questions etc. IRC works best for this type of thing I find. Once converted, switch the LLVM lit config to use ShTests the same as Clang. In addition to being able to delete large amounts of Python code from 'lit', this will also simplify the entire test suite and some of lit's architecture. Finally, the test suite runs 33% faster on Linux now. ;] For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s llvm-svn: 159525
* Fix mistyped CHECK lines.Benjamin Kramer2011-03-091-1/+1
| | | | llvm-svn: 127366
* Change tests from "opt %s" to "opt < %s" so that opt doesn't see theDan Gohman2009-09-111-1/+1
| | | | | | | | input filename so that opt doesn't print the input filename in the output so that grep lines in the tests don't unintentionally match strings in the input filename. llvm-svn: 81537
* Use opt -S instead of piping bitcode output through llvm-dis.Dan Gohman2009-09-081-1/+1
| | | | llvm-svn: 81257
* Change these tests to feed the assembly files to opt directly, insteadDan Gohman2009-09-081-1/+1
| | | | | | of using llvm-as, now that opt supports this. llvm-svn: 81226
* Restucture a part of the SimplifyCFG pass and include a testcase.Matthijs Kooijman2008-05-231-0/+131
The SimplifyCFG pass looks at basic blocks that contain only phi nodes, followed by an unconditional branch. In a lot of cases, such a block (BB) can be merged into their successor (Succ). This merging is performed by TryToSimplifyUncondBranchFromEmptyBlock. It does this by taking all phi nodes in the succesor block Succ and expanding them to include the predecessors of BB. Furthermore, any phi nodes in BB are moved to Succ and expanded to include the predecessors of Succ as well. Before attempting this merge, CanPropagatePredecessorsForPHIs checks to see if all phi nodes can be properly merged. All functional changes are made to this function, only comments were updated in TryToSimplifyUncondBranchFromEmptyBlock. In the original code, CanPropagatePredecessorsForPHIs looks quite convoluted and more like stack of checks added to handle different kinds of situations than a comprehensive check. In particular the first check in the function did some value checking for the case that BB and Succ have a common predecessor, while the last check in the function simply rejected all cases where BB and Succ have a common predecessor. The first check was still useful in the case that BB did not contain any phi nodes at all, though, so it was not completely useless. Now, CanPropagatePredecessorsForPHIs is restructured to to look a lot more similar to the code that actually performs the merge. Both functions now look at the same phi nodes in about the same order. Any conflicts (phi nodes with different values for the same source) that could arise from merging or moving phi nodes are detected. If no conflicts are found, the merge can happen. Apart from only restructuring the checks, two main changes in functionality happened. Firstly, the old code rejected blocks with common predecessors in most cases. The new code performs some extra checks so common predecessors can be handled in a lot of cases. Wherever common predecessors still pose problems, the blocks are left untouched. Secondly, the old code rejected the merge when values (phi nodes) from BB were used in any other place than Succ. However, it does not seem that there is any situation that would require this check. Even more, this can be proven. Consider that BB is a block containing of a single phi node "%a" and a branch to Succ. Now, since the definition of %a will dominate all of its uses, BB will dominate all blocks that use %a. Furthermore, since the branch from BB to Succ is unconditional, Succ will also dominate all uses of %a. Now, assume that one predecessor of Succ is not dominated by BB (and thus not dominated by Succ). Since at least one use of %a (but in reality all of them) is reachable from Succ, you could end up at a use of %a without passing through it's definition in BB (by coming from X through Succ). This is a contradiction, meaning that our original assumption is wrong. Thus, all predecessors of Succ must also be dominated by BB (and thus also by Succ). This means that moving the phi node %a from BB to Succ does not pose any problems when the two blocks are merged, and any use checks are not needed. llvm-svn: 51478
OpenPOWER on IntegriCloud