| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
as cleanups after D56351
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Triple components in `XFAIL` lines are tested against the target triple.
Various tests that are expected to fail on big-endian hosts are marked
as being `XFAIL` for big-endian targets. This patch corrects these tests
by having them test against a new `host-byteorder-big-endian` feature.
Reviewers: xingxue, sfertile, jasonliu
Reviewed By: xingxue
Subscribers: jvesely, nhaehnle, fedor.sergeev, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60551
llvm-svn: 359689
|
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add powerpc- (32-bit) as XFAIL for tests that are documented either in-
line or via commit messages as expected to fail on big-endian systems.
Tests not documented in-line are documented in commit messages as
follows:
r211172 - test/tools/llvm-cov/llvm-cov.test
r247920 - test/Transforms/SampleProfile/gcc-simple.ll
llvm-svn: 322114
|
|
|
|
| |
llvm-svn: 271072
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
|
|
|
|
| |
llvm-svn: 265953
|
|
|
|
| |
llvm-svn: 265081
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
|
|
|
|
|
|
|
|
|
|
| |
This test uses a gcov file generated in a little-endian host. The gcov
reader does not allow different endianness, so the test fails on big
endian hosts.
XFAILing for now.
llvm-svn: 247920
|
|
This adds enough machinery to support reading simple GCC AutoFDO
profiles. It now supports reading flat profiles (no function calls).
Subsequent patches will add support for:
- Inlined calls (in particular, the inline call stack is not traversed
to accumulate samples).
- Working sets and modules. These are used mostly for GCC's LIPO
optimizations, so they're not needed in LLVM atm. I'm not sure that
we will ever need them. For now, I've if0'd around the calls.
The patch also adds support in GCOV.h for gcov version V704 (generated
by GCC's profile conversion tool).
llvm-svn: 247874
|