summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/SROA/phi-and-select.ll
Commit message (Collapse)AuthorAgeFilesLines
* SROA: Allow eliminating addrspacecasted allocasMatt Arsenault2019-06-141-0/+50
| | | | | | | | | | | | | | | | | | | There is a circular dependency between SROA and InferAddressSpaces today that requires running both multiple times in order to be able to eliminate all simple allocas and addrspacecasts. InferAddressSpaces can't remove addrspacecasts when written to memory, and SROA helps move pointers out of memory. This should avoid inserting new commuting addrspacecasts with GEPs, since there are unresolved questions about pointer wrapping between different address spaces. For now, don't replace volatile operations that don't match the alloca addrspace, as it would change the address space of the access. It may be still OK to insert an addrspacecast from the new alloca, but be more conservative for now. llvm-svn: 363462
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+646
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-646/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* [Analysis] Fix isSafeToLoadUnconditionally handling of volatile.Eli Friedman2019-01-241-0/+12
| | | | | | | | | A volatile operation cannot be used to prove an address points to normal memory. (LangRef was recently updated to state it explicitly.) Differential Revision: https://reviews.llvm.org/D57040 llvm-svn: 352109
* [SROA] Fix alignment for uses of PHI nodes.Eli Friedman2018-08-301-0/+32
| | | | | | | | | | | | Splitting an alloca can decrease the alignment of GEPs into the partition. Normally, rewriting accounts for this, but the code was missing for uses of PHI nodes and select instructions. Fixes https://bugs.llvm.org/show_bug.cgi?id=38707 . Differential Revision: https://reviews.llvm.org/D51335 llvm-svn: 341094
* [SROA] Fix a nasty pile of bugs to do with big-endian, different allocaChandler Carruth2015-07-221-9/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | types and loads, loads or stores widened past the size of an alloca, etc. This started off with a bug report about big-endian behavior with bitfields and loads and stores to a { i32, i24 } struct. An initial attempt to fix this was sent for review in D10357, but that didn't really get to the root of the problem. The core issue was that canConvertValue and convertValue in SROA were handling different bitwidth integers by doing a zext of the integer. It wouldn't do a trunc though, only a zext! This would in turn lead SROA to form an i24 load from an i24 alloca, zext it to i32, and then use it. This would at least produce the wrong value for big-endian systems. One of my many false starts here was to correct the computation for big-endian systems by shifting. But this doesn't actually work because the original code has a 64-bit store to the entire 8 bytes, and a 32-bit load of the last 4 bytes, and because the alloc size is 8 bytes, we can't lose that last (least significant if bigendian) byte! The real problem here is that we're forming an i24 load in SROA which is actually not sufficiently wide to load all of the necessary bits here. The source has an i32 load, and SROA needs to form that as well. The straightforward way to do this is to disable the zext logic in canConvertValue and convertValue, forcing us to actually load all 32-bits. This seems like a really good change, but it in turn breaks several other parts of SROA. First in the chain of knock-on failures, we had places where we were doing integer-widening promotion even though some of the integer loads or stores extended *past the end* of the alloca's memory! There was even a comment about preventing this, but it only prevented the case where the type had a different bit size from its store size. So I added checks to handle the cases where we actually have a widened load or store and to avoid trying to special integer widening promotion in those cases. Second, we actually rely on the ability to promote in the face of loads past the end of an alloca! This is important so that we can (for example) speculate loads around PHI nodes to do more promotion. The bits loaded are garbage, but as long as they aren't used and the alignment is suitable high (which it wasn't in the test case!) this is "fine". And we can't stop promoting here, lots of things stop working well if we do. So we need to add specific logic to handle the extension (and truncation) case, but *only* where that extension or truncation are over bytes that *are outside the alloca's allocated storage* and thus totally bogus to load or store. And of course, once we add back this correct handling of extension or truncation, we need to correctly handle bigendian systems to avoid re-introducing the exact bug that started us off on this chain of misery in the first place, but this time even more subtle as it only happens along speculated loads atop a PHI node. I've ported an existing test for PHI speculation to the big-endian test file and checked that we get that part correct, and I've added several more interesting big-endian test cases that should help check that we're getting this correct. Fun times. llvm-svn: 242869
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-33/+33
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-19/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* SROA: Don't insert instructions before a PHIDavid Majnemer2014-09-011-0/+34
| | | | | | | | | | | | | | | SROA may decide that it needs to insert a bitcast and would set it's insertion point before a PHI. This will create an invalid module right quick. Instead, choose the first insertion point in the basic block that holds our PHI. This fixes PR20822. Differential Revision: http://reviews.llvm.org/D5141 llvm-svn: 216891
* [SROA] Fold a PHI node if all its incoming values are the sameJingyue Wu2014-08-221-0/+65
| | | | | | | | | | | | | | | | | | | Summary: Fixes PR20425. During slice building, if all of the incoming values of a PHI node are the same, replace the PHI node with the common value. This simplification makes alloca's used by PHI nodes easier to promote. Test Plan: Added three more tests in phi-and-select.ll Reviewers: nlewycky, eliben, meheff, chandlerc Reviewed By: chandlerc Subscribers: zinovy.nis, hfinkel, baldrick, llvm-commits Differential Revision: http://reviews.llvm.org/D4659 llvm-svn: 216299
* Fix a problem I introduced in r187029 where we would over-eagerlyChandler Carruth2013-07-241-0/+37
| | | | | | | | schedule an alloca for another iteration in SROA. This only showed up with a mixture of promotable and unpromotable selects and phis. Added a test case for this. llvm-svn: 187031
* Fix PR16687 where we were incorrectly promoting an alloca that hadChandler Carruth2013-07-241-0/+37
| | | | | | | | | | | | | | | | | | | | | | pending speculation for a phi node. The problem here is that we were using growth of the specluation set as an indicator of whether speculation would occur, and if the phi node is already in the set we don't see it grow. This is a symptom of the fact that this signal is a total hack. Unfortunately, I couldn't really come up with a non-hacky way of signaling that promotion remains valid *after* speculation occurs, such that we only speculate when all else looks good for promotion. In the end, I went with at least a much more explicit approach of doing the work of queuing inside the phi and select processing and setting a preposterously named flag to convey that we're in the special state of requiring speculating before promotion. Thanks to Richard Trieu and Nick Lewycky for the excellent work reducing a testcase for this from a pretty giant, nasty assert in a big application. =] The testcase was excellent. llvm-svn: 187029
* Update Transforms tests to use CHECK-LABEL for easier debugging. No ↵Stephen Lin2013-07-141-16/+16
| | | | | | | | | | | | | | | | | | | | | | functionality change. This update was done with the following bash script: find test/Transforms -name "*.ll" | \ while read NAME; do echo "$NAME" if ! grep -q "^; *RUN: *llc" $NAME; then TEMP=`mktemp -t temp` cp $NAME $TEMP sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \ while read FUNC; do sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP done mv $TEMP $NAME fi done llvm-svn: 186268
* PR14972: SROA vs. GVN exposed a really bad bug in SROA.Chandler Carruth2013-03-141-5/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
* Fix PR14132 and handle OOB loads speculated throuh PHI nodes.Chandler Carruth2012-11-201-0/+35
| | | | | | | | | | | | The issue is that we may end up with newly OOB loads when speculating a load into the predecessors of a PHI node, and this confuses the new integer splitting logic in some cases, triggering an assertion failure. In fact, the branch in question must be dead code as it loads from a too-narrow alloca. Add code to handle this gracefully and leave the requisite FIXMEs for both optimizing more aggressively and doing more to aid sanitizing invalid code which triggers these patterns. llvm-svn: 168361
* First major step toward addressing PR14059. This teaches SROA to handleChandler Carruth2012-10-151-21/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cases where we have partial integer loads and stores to an otherwise promotable alloca to widen[1] those loads and stores to cover the entire alloca and bitcast them into the appropriate type such that promotion can proceed. These partial loads and stores stem from an annoying confluence of ARM's calling convention and ABI lowering and the FCA pre-splitting which takes place in SROA. Clang lowers a { double, double } in-register function argument as a [4 x i32] function argument to ensure it is placed into integer 32-bit registers (a really unnerving implicit contract between Clang and the ARM backend I would add). This results in a FCA load of [4 x i32]* from the { double, double } alloca, and SROA decomposes this into a sequence of i32 loads and stores. Inlining proceeds, code gets folded, but at the end of the day, we still have i32 stores to the low and high halves of a double alloca. Widening these to be i64 operations, and bitcasting them to double prior to loading or storing allows promotion to proceed for these allocas. I looked quite a bit changing the IR which Clang produces for this case to be more friendly, but small changes seem unlikely to help. I think the best representation we could use currently would be to pass 4 i32 arguments thereby avoiding any FCAs, but that would still require this fix. It seems like it might eventually be nice to somehow encode the ABI register selection choices outside of the parameter type system so that the parameter can be a { double, double }, but the CC register annotations indicate that this should be passed via 4 integer registers. This patch does not address the second problem in PR14059, which is the reverse: when a struct alloca is loaded as a *larger* single integer. This patch also does not address some of the code quality issues with the FCA-splitting. Those don't actually impede any optimizations really, but they're on my list to clean up. [1]: Pedantic footnote: for those concerned about memory model issues here, this is safe. For the alloca to be promotable, it cannot escape or have any use of its address that could allow these loads or stores to be racing. Thus, widening is always safe. llvm-svn: 165928
* Teach the integer-promotion rewrite strategy to be endianness aware.Chandler Carruth2012-10-041-1/+1
| | | | | | | | | | | | | | | | | | | | | | | Sorry for this being broken so long. =/ As part of this, switch all of the existing tests to be Little Endian, which is the behavior I was asserting in them anyways! Add in a new big-endian test that checks the interesting behavior there. Another part of this is to tighten the rules abotu when we perform the full-integer promotion. This logic now rejects cases where there fully promoted integer is a non-multiple-of-8 bitwidth or cases where the loads or stores touch bits which are in the allocated space of the alloca but are not loaded or stored when accessing the integer. Sadly, these aren't really observable today as the rest of the pass will already ensure the invariants hold. However, the latter situation is likely to become a potential concern in the future. Thanks to Benjamin and Duncan for early review of this patch. I'm still looking into whether there are further endianness issues, please let me know if anyone sees BE failures persisting past this. llvm-svn: 165219
* Refactor the PartitionUse structure to actually use the Use* instead ofChandler Carruth2012-10-011-3/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | a pair of instructions, one for the used pointer and the second for the user. This simplifies the representation and also makes it more dense. This was noticed because of the miscompile in PR13926. In that case, we were running up against a fundamental "bad idea" in the speculation of PHI and select instructions: the speculation and rewriting are interleaved, which requires phi speculation to also perform load rewriting! This is bad, and causes us to miss opportunities to do (for example) vector rewriting only exposed after PHI speculation, etc etc. It also, in the old system, required us to insert *new* load uses into the current partition's use list, which would then be ignored during rewriting because we had already extracted an end iterator for the use list. The appending behavior (and much of the other oddities) stem from the strange de-duplication strategy in the PartitionUse builder. Amusingly, all this went without notice for so long because it could only be triggered by having *different* GEPs into the same partition of the same alloca, where both different GEPs were operands of a single PHI, and where the GEP which was not encountered first also had multiple uses within that same PHI node... Hence the insane steps required to reproduce. So, step one in fixing this fundamental bad idea is to make the PartitionUse actually contain a Use*, and to make the builder do proper deduplication instead of funky de-duplication. This is enough to remove the appending behavior, and fix the miscompile in PR13926, but there is more work to be done here. Subsequent commits will lift the speculation into its own visitor. It'll be a useful step toward potentially extracting all of the speculation logic into a generic utility transform. The existing PHI test case for repeated operands has been made more extreme to catch even these issues. This test case, run through the old pass, will exactly reproduce the miscompile from PR13926. ;] We were so close here! llvm-svn: 164925
* Fix a case where SROA did not correctly detect dead PHI or selects dueChandler Carruth2012-09-251-0/+45
| | | | | | | | to chains or cycles between PHIs and/or selects. Also add a couple of really nice test cases reduced from Kostya's reports in PR13905 and PR13906. Both are fixed by this patch. llvm-svn: 164596
* Fix a case where the new SROA pass failed to zap dead operands toChandler Carruth2012-09-211-7/+11
| | | | | | | | | | | selects with a constant condition. This resulted in the operands remaining live through the SROA rewriter. Most of the time, this just caused some dead allocas to persist and get zapped by later passes, but in one case found by Joerg, it caused a crash when we tried to *promote* the alloca despite it having this dead use. We already have the mechanisms in place to handle this, just wire select up to them. llvm-svn: 164427
* Introduce a new SROA implementation.Chandler Carruth2012-09-141-0/+325
This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
OpenPOWER on IntegriCloud