summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/Mem2Reg/ignore-lifetime.ll
Commit message (Collapse)AuthorAgeFilesLines
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+26
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-26/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* Add address space mangling to lifetime intrinsicsMatt Arsenault2017-04-101-6/+6
| | | | | | In preparation for allowing allocas to have non-0 addrspace. llvm-svn: 299876
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Remove duplicate copy of testcase in r188327.Nick Lewycky2013-08-131-26/+0
| | | | llvm-svn: 188328
* Revert r187191, which broke opt -mem2reg on the testcases included in PR16867.Nick Lewycky2013-08-131-0/+52
| | | | | | | | | | | | However, opt -O2 doesn't run mem2reg directly so nobody noticed until r188146 when SROA started sending more things directly down the PromoteMemToReg path. In order to revert r187191, I also revert dependent revisions r187296, r187322 and r188146. Fixes PR16867. Does not add the testcases from that PR, but both of them should get added for both mem2reg and sroa when this revert gets unreverted. llvm-svn: 188327
* Re-implement the analysis of uses in mem2reg to be significantly moreChandler Carruth2013-07-261-26/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | robust. It now uses an InstVisitor and worklist to actually walk the uses of the Alloca transitively and detect the pattern which we can directly promote: loads & stores of the whole alloca and instructions we can completely ignore. Also, with this new implementation teach both the predicate for testing whether we can promote and the promotion engine itself to use the same code so we no longer have strange divergence between the two code paths. I've added some silly test cases to demonstrate that we can handle slightly more degenerate code patterns now. See the below for why this is even interesting. Performance impact: roughly 1% regression in the performance of SROA or ScalarRepl on a large C++-ish test case where most of the allocas are basically ready for promotion. The reason is because of silly redundant work that I've left FIXMEs for and which I'll address in the next commit. I wanted to separate this commit as it changes the behavior. Once the redundant work in removing the dead uses of the alloca is fixed, this code appears to be faster than the old version. =] So why is this useful? Because the previous requirement for promotion required a *specific* visit pattern of the uses of the alloca to verify: we *had* to look for no more than 1 intervening use. The end goal is to have SROA automatically detect when an alloca is already promotable and directly hand it to the mem2reg machinery rather than trying to partition and rewrite it. This is a 25% or more performance improvement for SROA, and a significant chunk of the delta between it and ScalarRepl. To get there, we need to make mem2reg actually capable of promoting allocas which *look* promotable to SROA without have SROA do tons of work to massage the code into just the right form. This is actually the tip of the iceberg. There are tremendous potential savings we can realize here by de-duplicating work between mem2reg and SROA. llvm-svn: 187191
* Add test for r133251.Nick Lewycky2011-06-181-0/+26
llvm-svn: 133339
OpenPOWER on IntegriCloud