summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/LoopVectorize/X86/vect.omp.force.small-tc.ll
Commit message (Collapse)AuthorAgeFilesLines
* [LV] fold-tail predication should be respected even with assume_safetyDorit Nuzman2019-08-151-11/+11
| | | | | | | | | | | | | | | assume_safety implies that loads under "if's" can be safely executed speculatively (unguarded, unmasked). However this assumption holds only for the original user "if's", not those introduced by the compiler, such as the fold-tail "if" that guards us from loading beyond the original loop trip-count. Currently the combination of fold-tail and assume-safety pragmas results in ignoring the fold-tail predicate that guards the loads, generating unmasked loads. This patch fixes this behavior. Differential Revision: https://reviews.llvm.org/D66106 Reviewers: Ayal, hsaito, fhahn llvm-svn: 368973
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+217
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-217/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* Refactor setAlreadyUnrolled() and setAlreadyVectorized().Michael Kruse2019-02-111-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Loop::setAlreadyUnrolled() and LoopVectorizeHints::setLoopAlreadyUnrolled() both add loop metadata that stops the same loop from being transformed multiple times. This patch merges both implementations. In doing so we fix 3 potential issues: * setLoopAlreadyUnrolled() kept the llvm.loop.vectorize/interleave.* metadata even though it will not be used anymore. This already caused problems such as http://llvm.org/PR40546. Change the behavior to the one of setAlreadyUnrolled which deletes this loop metadata. * setAlreadyUnrolled() used to create a new LoopID by calling MDNode::get with nullptr as the first operand, then replacing it by the returned references using replaceOperandWith. It is possible that MDNode::get would instead return an existing node (due to de-duplication) that then gets modified. To avoid, use a fresh TempMDNode that does not get uniqued with anything else before replacing it with replaceOperandWith. * LoopVectorizeHints::matchesHintMetadataName() only compares the suffix of the attribute to set the new value for. That is, when called with "enable", would erase attributes such as "llvm.loop.unroll.enable", "llvm.loop.vectorize.enable" and "llvm.loop.distribute.enable" instead of the one to replace. Fortunately, function was only called with "isvectorized". Differential Revision: https://reviews.llvm.org/D57566 llvm-svn: 353738
* Introduce llvm.loop.parallel_accesses and llvm.access.group metadata.Michael Kruse2018-12-201-22/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current llvm.mem.parallel_loop_access metadata has a problem in that it uses LoopIDs. LoopID unfortunately is not loop identifier. It is neither unique (there's even a regression test assigning the some LoopID to multiple loops; can otherwise happen if passes such as LoopVersioning make copies of entire loops) nor persistent (every time a property is removed/added from a LoopID's MDNode, it will also receive a new LoopID; this happens e.g. when calling Loop::setLoopAlreadyUnrolled()). Since most loop transformation passes change the loop attributes (even if it just to mark that a loop should not be processed again as llvm.loop.isvectorized does, for the versioned and unversioned loop), the parallel access information is lost for any subsequent pass. This patch unlinks LoopIDs and parallel accesses. llvm.mem.parallel_loop_access metadata on instruction is replaced by llvm.access.group metadata. llvm.access.group points to a distinct MDNode with no operands (avoiding the problem to ever need to add/remove operands), called "access group". Alternatively, it can point to a list of access groups. The LoopID then has an attribute llvm.loop.parallel_accesses with all the access groups that are parallel (no dependencies carries by this loop). This intentionally avoid any kind of "ID". Loops that are clones/have their attributes modifies retain the llvm.loop.parallel_accesses attribute. Access instructions that a cloned point to the same access group. It is not necessary for each access to have it's own "ID" MDNode, but those memory access instructions with the same behavior can be grouped together. The behavior of llvm.mem.parallel_loop_access is not changed by this patch, but should be considered deprecated. Differential Revision: https://reviews.llvm.org/D52116 llvm-svn: 349725
* [LV] Fold tail by masking to vectorize loops of arbitrary trip count under ↵Ayal Zaks2018-10-181-9/+38
| | | | | | | | | | | | | | | | | | | | | | | | opt for size When optimizing for size, a loop is vectorized only if the resulting vector loop completely replaces the original scalar loop. This holds if no runtime guards are needed, if the original trip-count TC does not overflow, and if TC is a known constant that is a multiple of the VF. The last two TC-related conditions can be overcome by 1. rounding the trip-count of the vector loop up from TC to a multiple of VF; 2. masking the vector body under a newly introduced "if (i <= TC-1)" condition. The patch allows loops with arbitrary trip counts to be vectorized under -Os, subject to the existing cost model considerations. It also applies to loops with small trip counts (under -O2) which are currently handled as if under -Os. The patch does not handle loops with reductions, live-outs, or w/o a primary induction variable, and disallows interleave groups. (Third, final and main part of -) Differential Revision: https://reviews.llvm.org/D50480 llvm-svn: 344743
* [LV] Add test checks when vectorizing loops under opt for size; NFCAyal Zaks2018-10-161-11/+97
| | | | | | | | Landing this as a separate part of https://reviews.llvm.org/D50480, recording current behavior more accurately, to clarify subsequent diff ([LV] Vectorizing loops of arbitrary trip count without remainder under opt for size). llvm-svn: 344606
* [LV] Optimize for size when vectorizing loops with tiny trip countAyal Zaks2017-06-301-2/+29
| | | | | | | | | | | | | | | | | It may be detrimental to vectorize loops with very small trip count, as various costs of the vectorized loop body as well as enclosing overheads including runtime tests and scalar iterations may outweigh the gains of vectorizing. The current cost model measures the cost of the vectorized loop body only, expecting it will amortize other costs, and loops with known or expected very small trip counts are not vectorized at all. This patch allows loops with very small trip counts to be vectorized, but under OptForSize constraints, which ensure the cost of the loop body is dominant, having no runtime guards nor scalar iterations. Patch inspired by D32451. Differential Revision: https://reviews.llvm.org/D34373 llvm-svn: 306803
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-151-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* Rename loop unrolling and loop vectorizer metadata to have a common prefix.Eli Bendersky2014-06-251-1/+1
| | | | | | | | | | | | | | | | | | | [LLVM part] These patches rename the loop unrolling and loop vectorizer metadata such that they have a common 'llvm.loop.' prefix. Metadata name changes: llvm.vectorizer.* => llvm.loop.vectorizer.* llvm.loopunroll.* => llvm.loop.unroll.* This was a suggestion from an earlier review (http://reviews.llvm.org/D4090) which added the loop unrolling metadata. Patch by Mark Heffernan. llvm-svn: 211710
* [OPENMP][LV][D3423] Respect Hints.Force meta-data for loops in LoopVectorizerZinovy Nis2014-04-291-0/+73
llvm-svn: 207512
OpenPOWER on IntegriCloud