summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/LoopVectorize/X86/reg-usage-debug.ll
Commit message (Collapse)AuthorAgeFilesLines
* recommit: [LoopVectorize][PowerPC] Estimate int and float register pressure ↵Zi Xuan Wu2019-10-121-2/+10
| | | | | | | | | | | | | | | | | | | | | | | separately in loop-vectorize In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not estimate different register pressure for different register class separately(especially for scalar type, float type should not be on the same position with int type), so it's not accurate. Specifically, it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance. So we need classify the register classes in IR level, and importantly these are abstract register classes, and are not the target register class of backend provided in td file. It's used to establish the mapping between the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types. For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR), float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled, and 3 kinds of register class when VSX is NOT enabled. It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions. Differential revision: https://reviews.llvm.org/D67148 llvm-svn: 374634
* Revert "[LoopVectorize][PowerPC] Estimate int and float register pressure ↵Jinsong Ji2019-10-081-10/+2
| | | | | | | | | | | | | | separately in loop-vectorize" Also Revert "[LoopVectorize] Fix non-debug builds after rL374017" This reverts commit 9f41deccc0e648a006c9f38e11919f181b6c7e0a. This reverts commit 18b6fe07bcf44294f200bd2b526cb737ed275c04. The patch is breaking PowerPC internal build, checked with author, reverting on behalf of him for now due to timezone. llvm-svn: 374091
* [LoopVectorize][PowerPC] Estimate int and float register pressure separately ↵Zi Xuan Wu2019-10-081-2/+10
| | | | | | | | | | | | | | | | | | | | | | | in loop-vectorize In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not estimate different register pressure for different register class separately(especially for scalar type, float type should not be on the same position with int type), so it's not accurate. Specifically, it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance. So we need classify the register classes in IR level, and importantly these are abstract register classes, and are not the target register class of backend provided in td file. It's used to establish the mapping between the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types. For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR), float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled, and 3 kinds of register class when VSX is NOT enabled. It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions. Differential revision: https://reviews.llvm.org/D67148 llvm-svn: 374017
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+134
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-134/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.Shiva Chen2018-05-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to set breakpoints on labels and list source code around labels, we need collect debug information for labels, i.e., label name, the function label belong, line number in the file, and the address label located. In order to keep these information in LLVM IR and to allow backend to generate debug information correctly. We create a new kind of metadata for labels, DILabel. The format of DILabel is !DILabel(scope: !1, name: "foo", file: !2, line: 3) We hope to keep debug information as much as possible even the code is optimized. So, we create a new kind of intrinsic for label metadata to avoid the metadata is eliminated with basic block. The intrinsic will keep existing if we keep it from optimized out. The format of the intrinsic is llvm.dbg.label(metadata !1) It has only one argument, that is the DILabel metadata. The intrinsic will follow the label immediately. Backend could get the label metadata through the intrinsic's parameter. We also create DIBuilder API for labels to be used by Frontend. Frontend could use createLabel() to allocate DILabel objects, and use insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR. Differential Revision: https://reviews.llvm.org/D45024 Patch by Hsiangkai Wang. llvm-svn: 331841
* [LoopVectorizer] When estimating reg usage, unused insts may "end" another useRobert Lougher2016-11-151-0/+134
The register usage algorithm incorrectly treats instructions whose value is not used within the loop (e.g. those that do not produce a value). The algorithm first calculates the usages within the loop. It iterates over the instructions in order, and records at which instruction index each use ends (in fact, they're actually recorded against the next index, as this is when we want to delete them from the open intervals). The algorithm then iterates over the instructions again, adding each instruction in turn to a list of open intervals. Instructions are then removed from the list of open intervals when they occur in the list of uses ended at the current index. The problem is, instructions which are not used in the loop are skipped. However, although they aren't used, the last use of a value may have been recorded against that instruction index. In this case, the use is not deleted from the open intervals, which may then bump up the estimated register usage. This patch fixes the issue by simply moving the "is used" check after the loop which erases the uses at the current index. Differential Revision: https://reviews.llvm.org/D26554 llvm-svn: 286969
OpenPOWER on IntegriCloud