summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/LoopVectorize/PowerPC/vsx-tsvc-s173.ll
Commit message (Collapse)AuthorAgeFilesLines
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+51
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-51/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* [LV] Scalarize instructions marked scalar after vectorizationMatthew Simpson2016-09-261-1/+1
| | | | | | | | | This patch ensures that we actually scalarize instructions marked scalar after vectorization. Previously, such instructions may have been vectorized instead. Differential Revision: https://reviews.llvm.org/D23889 llvm-svn: 282418
* Recommit the patch "Use uniforms set to populate VecValuesToIgnore".Wei Mi2016-07-191-1/+1
| | | | | | | | | | | | | | | | | | For instructions in uniform set, they will not have vector versions so add them to VecValuesToIgnore. For induction vars, those only used in uniform instructions or consecutive ptrs instructions have already been added to VecValuesToIgnore above. For those induction vars which are only used in uniform instructions or non-consecutive/non-gather scatter ptr instructions, the related phi and update will also be added into VecValuesToIgnore set. The change will make the vector RegUsages estimation less conservative. Differential Revision: https://reviews.llvm.org/D20474 The recommit fixed the testcase global_alias.ll. llvm-svn: 275936
* Revert rL275912.Wei Mi2016-07-181-1/+1
| | | | llvm-svn: 275915
* Use uniforms set to populate VecValuesToIgnore.Wei Mi2016-07-181-1/+1
| | | | | | | | | | | | | | | | For instructions in uniform set, they will not have vector versions so add them to VecValuesToIgnore. For induction vars, those only used in uniform instructions or consecutive ptrs instructions have already been added to VecValuesToIgnore above. For those induction vars which are only used in uniform instructions or non-consecutive/non-gather scatter ptr instructions, the related phi and update will also be added into VecValuesToIgnore set. The change will make the vector RegUsages estimation less conservative. Differential Revision: https://reviews.llvm.org/D20474 llvm-svn: 275912
* [InstCombine] scalarizePHI should not assume the code it sees has been CSE'dMichael Kuperstein2016-06-061-1/+1
| | | | | | | | | | | | | | scalarizePHI only looked for phis that have exactly two uses - the "latch" use, and an extract. Unfortunately, we can not assume all equivalent extracts are CSE'd, since InstCombine itself may create an extract which is a duplicate of an existing one. This extends it to handle several distinct extracts from the same index. This should fix at least some of the performance regressions from PR27988. Differential Revision: http://reviews.llvm.org/D20983 llvm-svn: 271961
* [LV] For some IVs, use vector phis instead of widening in the loop bodyMichael Kuperstein2016-06-011-1/+1
| | | | | | | | | | | | | Previously, whenever we needed a vector IV, we would create it on the fly, by splatting the scalar IV and adding a step vector. Instead, we can create a real vector IV. This tends to save a couple of instructions per iteration. This only changes the behavior for the most basic case - integer primary IVs with a constant step. Differential Revision: http://reviews.llvm.org/D20315 llvm-svn: 271410
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* [LoopVectorizer] Count dependencies of consecutive pointers as uniformsHal Finkel2014-04-021-0/+51
For the purpose of calculating the cost of the loop at various vectorization factors, we need to count dependencies of consecutive pointers as uniforms (which means that the VF = 1 cost is used for all overall VF values). For example, the TSVC benchmark function s173 has: ... %3 = add nsw i64 %indvars.iv, 16000 %arrayidx8 = getelementptr inbounds %struct.GlobalData* @global_data, i64 0, i32 0, i64 %3 ... and we must realize that the add will be a scalar in order to correctly deduce it to be profitable to vectorize this on PowerPC with VSX enabled. In fact, all dependencies of a consecutive pointer must be a scalar (uniform), and so we simply need to add all consecutive pointers to the worklist that currently detects collects uniforms. Fixes PR19296. llvm-svn: 205387
OpenPOWER on IntegriCloud