summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/LoopSimplify/ashr-crash.ll
Commit message (Collapse)AuthorAgeFilesLines
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+80
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-80/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [LPM] Switch LICM to actively use LCSSA in addition to preserving it.Chandler Carruth2014-02-111-3/+3
| | | | | | | | | | | | | | | | | | | | | | | Fixes PR18753 and PR18782. This is necessary for LICM to preserve LCSSA correctly and efficiently. There is still some active discussion about whether we should be using LCSSA, but we can't just immediately stop using it and we *need* LICM to preserve it while we are using it. We can restore the old SSAUpdater driven code if and when there is a serious effort to remove the reliance on LCSSA from all of the loop passes. However, this also serves as a great example of why LCSSA is very nice to have. This change significantly simplifies the process of sinking instructions for LICM, and makes it quite a bit less expensive. It wouldn't even be as complex as it is except that I had to start the process of removing the big recursive LCSSA formation hammer in order to switch even this much of the re-forming code to asserting that LCSSA was preserved. I'll fully remove that next just to tidy things up until the LCSSA debate settles one way or the other. llvm-svn: 201148
* [LPM] Make LCSSA a utility with a FunctionPass that applies it to allChandler Carruth2014-01-251-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | the loops in a function, and teach LICM to work in the presance of LCSSA. Previously, LCSSA was a loop pass. That made passes requiring it also be loop passes and unable to depend on function analysis passes easily. It also caused outer loops to have a different "canonical" form from inner loops during analysis. Instead, we go into LCSSA form and preserve it through the loop pass manager run. Note that this has the same problem as LoopSimplify that prevents enabling its verification -- loop passes which run at the end of the loop pass manager and don't preserve these are valid, but the subsequent loop pass runs of outer loops that do preserve this pass trigger too much verification and fail because the inner loop no longer verifies. The other problem this exposed is that LICM was completely unable to handle LCSSA form. It didn't preserve it and it actually would give up on moving instructions in many cases when they were used by an LCSSA phi node. I've taught LICM to support detecting LCSSA-form PHI nodes and to hoist and sink around them. This may actually let LICM fire significantly more because we put everything into LCSSA form to rotate the loop before running LICM. =/ Now LICM should handle that fine and preserve it correctly. The down side is that LICM has to require LCSSA in order to preserve it. This is just a fact of life for LCSSA. It's entirely possible we should completely remove LCSSA from the optimizer. The test updates are essentially accomodating LCSSA phi nodes in the output of LICM, and the fact that we now completely sink every instruction in ashr-crash below the loop bodies prior to unrolling. With this change, LCSSA is computed only three times in the pass pipeline. One of them could be removed (and potentially a SCEV run and a separate LoopPassManager entirely!) if we had a LoopPass variant of InstCombine that ran InstCombine on the loop body but refused to combine away LCSSA PHI nodes. Currently, this also prevents loop unrolling from being in the same loop pass manager is rotate, LICM, and unswitch. There is one thing that I *really* don't like -- preserving LCSSA in LICM is quite expensive. We end up having to re-run LCSSA twice for some loops after LICM runs because LICM can undo LCSSA both in the current loop and the parent loop. I don't really see good solutions to this other than to completely move away from LCSSA and using tools like SSAUpdater instead. llvm-svn: 200067
* Reapply r198478 "Fix PR18361: Invalidate LoopDispositions after LoopSimplify ↵Andrew Trick2014-01-061-0/+80
| | | | | | | | | | hoists things." Now with a fix for PR18384: ValueHandleBase::ValueIsDeleted. We need to invalidate SCEV's loop info when we delete a block, even if no values are hoisted. llvm-svn: 198631
* Revert "Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists ↵Alp Toker2014-01-041-80/+0
| | | | | | | | | | | | | | | | | things." This commit was the source of crasher PR18384: While deleting: label %for.cond127 An asserting value handle still pointed to this value! UNREACHABLE executed at llvm/lib/IR/Value.cpp:671! Reverting to get the builders green, feel free to re-land after fixing up. (Renato has a handy isolated repro if you need it.) This reverts commit r198478. llvm-svn: 198503
* Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists things.Andrew Trick2014-01-041-0/+80
getSCEV for an ashr instruction creates an intermediate zext expression when it truncates its operand. The operand is initially inside the loop, so the narrow zext expression has a non-loop-invariant loop disposition. LoopSimplify then runs on an outer loop, hoists the ashr operand, and properly invalidate the SCEVs that are mapped to value. The SCEV expression for the ashr is now an AddRec with the hoisted value as the now loop-invariant start value. The LoopDisposition of this wide value was properly invalidated during LoopSimplify. However, if we later get the ashr SCEV again, we again try to create the intermediate zext expression. We get the same SCEV that we did earlier, and it is still cached because it was never mapped to a Value. When we try to create a new AddRec we abort because we're using the old non-loop-invariant LoopDisposition. I don't have a solution for this other than to clear LoopDisposition when LoopSimplify hoists things. I think the long-term strategy should be to perform LoopSimplify on all loops before computing SCEV and before running any loop opts on individual loops. It's possible we may want to rerun LoopSimplify on individual loops, but it should rarely do anything, so rarely require invalidating SCEV. llvm-svn: 198478
OpenPOWER on IntegriCloud