| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
| |
Exercise more use of volatiles to illustrate that nothing changes as we tweak how we detect them.
llvm-svn: 340244
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
must execute
It is common to have conditional exits within a loop which are known not to be taken on some iterations, but not necessarily all. This patches extends our reasoning around guaranteed to execute (used when establishing whether it's safe to dereference a location from the preheader) to handle the case where an exit is known not to be taken on the first iteration and the instruction of interest *is* known to be taken on the first iteration.
This case comes up in two major ways:
* If we have a range check which we've been unable to eliminate, we frequently know that it doesn't fail on the first iteration.
* Pass ordering. We may have a check which will be eliminated through some sequence of other passes, but depending on the exact pass sequence we might never actually do so or we might miss other optimizations from passes run before the check is finally eliminated.
The initial version (here) is implemented via InstSimplify. At the moment, it catches a few cases, but misses a lot too. I added test cases for missing cases in InstSimplify which I'll follow up on separately. Longer term, we should probably wire SCEV through to here to get much smarter loop aware simplification of the first iteration predicate.
Differential Revision: https://reviews.llvm.org/D44287
llvm-svn: 327664
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extend our store promotion code to deal with unordered atomic accesses. Ordered atomics continue to be unhandled.
Most of the change is straight-forward, the only complicated bit is in the reasoning around mixing of atomic and non-atomic memory access. Rather than trying to reason about the complex semantics in these cases, I simply disallowed promotion when both atomic and non-atomic accesses are present. This is conservatively correct.
It seems really tempting to just promote all access to atomics, but the original accesses might have been conditional. Since we can't lower an arbitrary atomic type, it might not be safe to promote all access to atomic. Consider a loop like the following:
while(b) {
load i128 ...
if (can lower i128 atomic)
store atomic i128 ...
else
store i128
}
It could be there's no race on the location and thus the code is perfectly well defined even if we can't lower a i128 atomically.
It's not clear we need to be this conservative - arguably the program above is brocken since it can't be lowered unless the branch is folded - but I didn't want to have to fix any fallout which might result.
Differential Revision: https://reviews.llvm.org/D15592
llvm-svn: 295015
|
|
to scalar-promote-unwind.ll. NFCI
llvm-svn: 292251
|