summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/JumpThreading/combine-metadata.ll
Commit message (Collapse)AuthorAgeFilesLines
* Temporarily revert "Reapply [LVI] Normalize pointer behavior" and "[LVI] ↵Jordan Rupprecht2019-12-201-2/+1
| | | | | | Restructure caching" This reverts commits 7e18aeba5062cd4324a9efb7bc25c9dbc4a34c2c (D70376) 21fbd5587cdfa11dabb3aeb0ead2d3d5fd0b490d (D69914) due to increased memory usage.
* Reapply [LVI] Normalize pointer behaviorNikita Popov2019-12-131-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is a rebase of the change over D70376, which fixes an LVI cache invalidation issue that also affected this patch. ----- Related to D69686. As noted there, LVI currently behaves differently for integer and pointer values: For integers, the block value is always valid inside the basic block, while for pointers it is only valid at the end of the basic block. I believe the integer behavior is the correct one, and CVP relies on it via its getConstantRange() uses. The reason for the special pointer behavior is that LVI checks whether a pointer is dereferenced in a given basic block and marks it as non-null in that case. Of course, this information is valid only after the dereferencing instruction, or in conservative approximation, at the end of the block. This patch changes the treatment of dereferencability: Instead of including it inside the block value, we instead treat it as something similar to an assume (it essentially is a non-nullness assume) and incorporate this information in intersectAssumeOrGuardBlockValueConstantRange() if the context instruction is the terminator of the basic block. This happens either when determining an edge-value internally in LVI, or when a terminator was explicitly passed to getValueAt(). The latter case makes this change not fully NFC, because we can now fold terminator icmps based on the dereferencability information in the same block. This is the reason why I changed one JumpThreading test (it would optimize the condition away without the change). Of course, we do not want to recompute dereferencability on each intersectAssume call, so we need a new cache for this. The dereferencability analysis requires walking the entire basic block and computing underlying objects of all memory operands. This was previously done separately for each queried pointer value. In the new implementation (both because this makes the caching simpler, and because it is faster), I instead only walk the full BB once and cache all the dereferenced pointers. So the traversal is now performed only once per BB, instead of once per queried pointer value. I think the overall model now makes more sense than before, and there will be no more pitfalls due to differing integer/pointer behavior. Differential Revision: https://reviews.llvm.org/D69914
* Temporarily Revert "Reapply [LVI] Normalize pointer behavior" as it's broken ↵Eric Christopher2019-11-121-2/+1
| | | | | | | | python 3.6. Reverting to figure out if it's a problem in python or the compiler for now. This reverts commit 885a05f48a5d320946c89590b73a764e5884fe4f.
* Reapply [LVI] Normalize pointer behaviorNikita Popov2019-11-081-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix cache invalidation by not guarding the dereferenced pointer cache erasure by SeenBlocks. SeenBlocks is only populated when actually caching a value in the block, which doesn't necessarily have to happen just because dereferenced pointers were calculated. ----- Related to D69686. As noted there, LVI currently behaves differently for integer and pointer values: For integers, the block value is always valid inside the basic block, while for pointers it is only valid at the end of the basic block. I believe the integer behavior is the correct one, and CVP relies on it via its getConstantRange() uses. The reason for the special pointer behavior is that LVI checks whether a pointer is dereferenced in a given basic block and marks it as non-null in that case. Of course, this information is valid only after the dereferencing instruction, or in conservative approximation, at the end of the block. This patch changes the treatment of dereferencability: Instead of including it inside the block value, we instead treat it as something similar to an assume (it essentially is a non-nullness assume) and incorporate this information in intersectAssumeOrGuardBlockValueConstantRange() if the context instruction is the terminator of the basic block. This happens either when determining an edge-value internally in LVI, or when a terminator was explicitly passed to getValueAt(). The latter case makes this change not fully NFC, because we can now fold terminator icmps based on the dereferencability information in the same block. This is the reason why I changed one JumpThreading test (it would optimize the condition away without the change). Of course, we do not want to recompute dereferencability on each intersectAssume call, so we need a new cache for this. The dereferencability analysis requires walking the entire basic block and computing underlying objects of all memory operands. This was previously done separately for each queried pointer value. In the new implementation (both because this makes the caching simpler, and because it is faster), I instead only walk the full BB once and cache all the dereferenced pointers. So the traversal is now performed only once per BB, instead of once per queried pointer value. I think the overall model now makes more sense than before, and there will be no more pitfalls due to differing integer/pointer behavior. Differential Revision: https://reviews.llvm.org/D69914
* Revert "[LVI] Normalize pointer behavior"Nikita Popov2019-11-081-2/+1
| | | | | | | This reverts commit 15bc4dc9a8949f9cffd46ec647baf0818d28fb28. clang-cmake-x86_64-sde-avx512-linux buildbot reported quite a few compile-time regressions in test-suite, will investigate.
* [LVI] Normalize pointer behaviorNikita Popov2019-11-081-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Related to D69686. As noted there, LVI currently behaves differently for integer and pointer values: For integers, the block value is always valid inside the basic block, while for pointers it is only valid at the end of the basic block. I believe the integer behavior is the correct one, and CVP relies on it via its getConstantRange() uses. The reason for the special pointer behavior is that LVI checks whether a pointer is dereferenced in a given basic block and marks it as non-null in that case. Of course, this information is valid only after the dereferencing instruction, or in conservative approximation, at the end of the block. This patch changes the treatment of dereferencability: Instead of including it inside the block value, we instead treat it as something similar to an assume (it essentially is a non-nullness assume) and incorporate this information in intersectAssumeOrGuardBlockValueConstantRange() if the context instruction is the terminator of the basic block. This happens either when determining an edge-value internally in LVI, or when a terminator was explicitly passed to getValueAt(). The latter case makes this change not fully NFC, because we can now fold terminator icmps based on the dereferencability information in the same block. This is the reason why I changed one JumpThreading test (it would optimize the condition away without the change). Of course, we do not want to recompute dereferencability on each intersectAssume call, so we need a new cache for this. The dereferencability analysis requires walking the entire basic block and computing underlying objects of all memory operands. This was previously done separately for each queried pointer value. In the new implementation (both because this makes the caching simpler, and because it is faster), I instead only walk the full BB once and cache all the dereferenced pointers. So the traversal is now performed only once per BB, instead of once per queried pointer value. I think the overall model now makes more sense than before, and there will be no more pitfalls due to differing integer/pointer behavior. Differential Revision: https://reviews.llvm.org/D69914
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+122
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-122/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* [Local] Make DoesKMove required for combineMetadata.Florian Hahn2018-08-241-0/+122
This patch makes the DoesKMove argument non-optional, to force people to think about it. Most cases where it is false are either code hoisting or code sinking, where we pick one instruction from a set of equal instructions among different code paths. Reviewers: dberlin, nlopes, efriedma, davide Reviewed By: efriedma Differential Revision: https://reviews.llvm.org/D47475 llvm-svn: 340606
OpenPOWER on IntegriCloud