| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The problem is shown specifically for a case with vector multiply here:
https://bugs.llvm.org/show_bug.cgi?id=40032
...and this might mask the original backend bug for ARM shown in:
https://bugs.llvm.org/show_bug.cgi?id=39967
As the test diffs here show, we were (and probably still aren't) doing
these kinds of transforms in a principled way. We are producing more or
equal wide instructions than we started with in some cases, so we still
need to restrict/correct other transforms from overstepping.
If there are perf regressions from this change, we can either carve out
exceptions to the general IR rules, or improve the backend to do these
transforms when we know the transform is profitable. That's probably
similar to a change like D55448.
Differential Revision: https://reviews.llvm.org/D55744
llvm-svn: 349389
|
|
|
|
| |
llvm-svn: 349306
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-trying r344082 because it unintentionally included extra diffs.
Original commit message:
icmp ne (and X, 1), 0 --> trunc X to N x i1
Ideally, we'd do the same for scalars, but there will likely be
regressions unless we add more trunc folds as we're doing here
for vectors.
The motivating vector case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
define <4 x float> @bitwise_select(<4 x float> %x, <4 x float> %y, <4 x float> %z, <4 x float> %w) {
%c = fcmp ole <4 x float> %x, %y
%s = sext <4 x i1> %c to <4 x i32>
%s1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s2 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%cond = or <4 x i32> %s1, %s2
%condtr = trunc <4 x i32> %cond to <4 x i1>
%r = select <4 x i1> %condtr, <4 x float> %z, <4 x float> %w
ret <4 x float> %r
}
Here's a sampling of the vector codegen for that case using
mask+icmp (current behavior) vs. trunc (with this patch):
AVX before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vandps LCPI0_0(%rip), %xmm0, %xmm0
vxorps %xmm1, %xmm1, %xmm1
vpcmpeqd %xmm1, %xmm0, %xmm0
vblendvps %xmm0, %xmm3, %xmm2, %xmm0
AVX after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
AVX512f before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpbroadcastd LCPI0_0(%rip), %xmm1 ## xmm1 = [1,1,1,1]
vptestnmd %zmm1, %zmm0, %k1
vblendmps %zmm3, %zmm2, %zmm0 {%k1}
AVX512f after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpslld $31, %xmm0, %xmm0
vptestmd %zmm0, %zmm0, %k1
vblendmps %zmm2, %zmm3, %zmm0 {%k1}
AArch64 before:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
movi v1.4s, #1
and v0.16b, v0.16b, v1.16b
cmeq v0.4s, v0.4s, #0
bsl v0.16b, v3.16b, v2.16b
AArch64 after:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
bsl v0.16b, v2.16b, v3.16b
PowerPC-le before:
xvcmpgesp 34, 35, 34
vspltisw 0, 1
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxlxor 35, 35, 35
xxland 34, 0, 32
vcmpequw 2, 2, 3
xxsel 34, 36, 37, 34
PowerPC-le after:
xvcmpgesp 34, 35, 34
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxsel 34, 37, 36, 0
Differential Revision: https://reviews.llvm.org/D52747
llvm-svn: 344181
|
|
|
|
|
|
| |
This commit accidentally included the diffs from D53057.
llvm-svn: 344178
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
icmp ne (and X, 1), 0 --> trunc X to N x i1
Ideally, we'd do the same for scalars, but there will likely be
regressions unless we add more trunc folds as we're doing here
for vectors.
The motivating vector case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
define <4 x float> @bitwise_select(<4 x float> %x, <4 x float> %y, <4 x float> %z, <4 x float> %w) {
%c = fcmp ole <4 x float> %x, %y
%s = sext <4 x i1> %c to <4 x i32>
%s1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s2 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%cond = or <4 x i32> %s1, %s2
%condtr = trunc <4 x i32> %cond to <4 x i1>
%r = select <4 x i1> %condtr, <4 x float> %z, <4 x float> %w
ret <4 x float> %r
}
Here's a sampling of the vector codegen for that case using
mask+icmp (current behavior) vs. trunc (with this patch):
AVX before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vandps LCPI0_0(%rip), %xmm0, %xmm0
vxorps %xmm1, %xmm1, %xmm1
vpcmpeqd %xmm1, %xmm0, %xmm0
vblendvps %xmm0, %xmm3, %xmm2, %xmm0
AVX after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
AVX512f before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpbroadcastd LCPI0_0(%rip), %xmm1 ## xmm1 = [1,1,1,1]
vptestnmd %zmm1, %zmm0, %k1
vblendmps %zmm3, %zmm2, %zmm0 {%k1}
AVX512f after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpslld $31, %xmm0, %xmm0
vptestmd %zmm0, %zmm0, %k1
vblendmps %zmm2, %zmm3, %zmm0 {%k1}
AArch64 before:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
movi v1.4s, #1
and v0.16b, v0.16b, v1.16b
cmeq v0.4s, v0.4s, #0
bsl v0.16b, v3.16b, v2.16b
AArch64 after:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
bsl v0.16b, v2.16b, v3.16b
PowerPC-le before:
xvcmpgesp 34, 35, 34
vspltisw 0, 1
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxlxor 35, 35, 35
xxland 34, 0, 32
vcmpequw 2, 2, 3
xxsel 34, 36, 37, 34
PowerPC-le after:
xvcmpgesp 34, 35, 34
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxsel 34, 37, 36, 0
Differential Revision: https://reviews.llvm.org/D52747
llvm-svn: 344082
|
|
|
|
|
|
| |
See discussion in D52747.
llvm-svn: 343595
|
|
|
|
| |
llvm-svn: 343529
|
|
|
|
|
|
|
| |
These files used an old version of the script.
We regex more now.
llvm-svn: 343527
|
|
|
|
|
|
|
|
|
|
|
|
| |
Looks like for 'and' and 'or' we end up performing at least some of the transformations this is bocking in a round about way anyway.
For 'and sext(cmp1), sext(cmp2) we end up later turning it into 'select cmp1, sext(cmp2), 0'. Then we optimize that back to sext (and cmp1, cmp2). This is the same result we would have gotten if shouldOptimizeCast hadn't blocked it. We do something analogous for 'or'.
With this patch we allow that transformation to happen directly in foldCastedBitwiseLogic. And we now support the same thing for 'xor'. This is definitely opening up many other cases, but since we already went around it for some cases hopefully it's ok.
Differential Revision: https://reviews.llvm.org/D36213
llvm-svn: 311508
|
|
|
|
|
|
| |
shifts to handle vector splats too.
llvm-svn: 310185
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
inline the remaining code to match visitOr
Summary:
The (not (sext)) case is really (xor (sext), -1) which should have been simplified to (sext (xor, 1)) before we got here. So we shouldn't need to handle it.
With that taken care of we only need to two cases so don't need the swap anymore. This makes us in sync with the equivalent code in visitOr so inline this to match.
Reviewers: spatel, eli.friedman, majnemer
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36240
llvm-svn: 310063
|
|
|
|
|
|
|
|
|
|
| |
'sext' of 'cmp' test.
When the 'and' test was originally added it was intended to make sure we didn't change it to a sext of and of cmp. But since then the test was changed to expect it to be turned into 'select cmp1, sext cmp2, 0'. Then another optimization was added to turn the select into 'sext (and cmp1, cmp2)' which is exactly the transformation that was being blocked when the test case started.
Looks like 'or' gets optimized in a similar way, but not 'xor'.
llvm-svn: 309793
|
|
|
|
| |
llvm-svn: 300888
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the 2nd part of solving:
http://lists.llvm.org/pipermail/llvm-dev/2017-February/110293.html
D30123 moves the trunc ahead of the shuffle, and this moves the trunc ahead of the insertelement.
We're limiting this transform to undef rather than any constant to avoid backend problems.
Differential Revision: https://reviews.llvm.org/D30137
llvm-svn: 297242
|
|
|
|
| |
llvm-svn: 295553
|
|
|
|
| |
llvm-svn: 292064
|
|
|
|
| |
llvm-svn: 282896
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Turn (select C, (sext A), B) into (sext (select C, A, B')) when A is i1 and
B is a compatible constant, also for zext instead of sext. This will then be
further folded into logical operations.
The transformation would be valid for non-i1 types as well, but other parts of
InstCombine prefer to have sext from non-i1 as an operand of select.
Motivated by the shader compiler frontend in Mesa for AMDGPU, which emits i32
for boolean operations. With this change, the boolean logic is fully
recovered.
Reviewers: majnemer, spatel, tstellarAMD
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22747
llvm-svn: 277801
|
|
|
|
|
|
| |
created a value with the wrong type. Fixes PR24458!
llvm-svn: 245119
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functionality change.
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
|
|
|
|
|
|
|
|
| |
sext-not-and --> select.
Patch by Muhammad Tauqir Ahmad.
llvm-svn: 173901
|
|
|
|
|
|
|
|
| |
to be uniqued, without any benefit.
If someone prefers %tmp42 to %42, run instnamer.
llvm-svn: 140634
|
|
|
|
|
|
| |
integer. Fixes PR9228!
llvm-svn: 125613
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
what it does. Enhance it to return false to optimizing vector
sign extensions from vector comparisions, which is the idiom used
to get a splatted vector for a vector comparison.
Doing this breaks vector-casts.ll, add some compensating
transformations to handle the important case they cover without
depending on this canonicalization.
This fixes rdar://7434900 a serious pessimization of vector compares.
llvm-svn: 95855
|
|
|
|
|
|
|
|
| |
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
|
|
|
|
| |
llvm-svn: 81257
|
|
|
|
|
|
| |
of using llvm-as, now that opt supports this.
llvm-svn: 81226
|
|
|
|
| |
llvm-svn: 76864
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
also apply to vectors. This allows us to compile this:
#include <emmintrin.h>
__m128i a(__m128 a, __m128 b) { return a==a & b==b; }
__m128i b(__m128 a, __m128 b) { return a!=a | b!=b; }
to:
_a:
cmpordps %xmm1, %xmm0
ret
_b:
cmpunordps %xmm1, %xmm0
ret
with clang instead of to a ton of horrible code.
llvm-svn: 76863
|
|
|
|
|
|
|
| |
with negative tests: this test wasn't checking what it thought it was
because it was grepping .bc, not .ll.
llvm-svn: 76861
|
|
|
|
| |
llvm-svn: 76860
|
|
|
|
| |
llvm-svn: 73541
|
|
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
llvm-svn: 73431
|