| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
And simultaneously enhance SimplifyDemandedVectorElts() to rcognize that
pattern. That preserves some of the old optimizations in IR.
Given a shuffle that includes undef elements in an otherwise identity mask like:
define <4 x float> @shuffle(<4 x float> %arg) {
%shuf = shufflevector <4 x float> %arg, <4 x float> undef, <4 x i32> <i32 undef, i32 1, i32 2, i32 3>
ret <4 x float> %shuf
}
We were simplifying that to the input operand.
But as discussed in PR43958:
https://bugs.llvm.org/show_bug.cgi?id=43958
...that means that per-vector-element poison that would be stopped by the shuffle can now
leak to the result.
Also note that we still have (and there are tests for) the same transform with no undef
elements in the mask (a fully-defined identity mask). I don't think there's any
controversy about that case - it's a valid transform under any interpretation of
shufflevector/undef/poison.
Looking at a few of the diffs into codegen, I don't see any difference in final asm. So
depending on your perspective, that's good (no real loss of optimization power) or bad
(poison exists in the DAG, so we only partially fixed the bug).
Differential Revision: https://reviews.llvm.org/D70246
|
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
| |
As the TODO indicates, instsimplify could be improved.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=41419
llvm-svn: 357910
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In PR41304:
https://bugs.llvm.org/show_bug.cgi?id=41304
...we have a case where we want to fold a binop of select-shuffle (blended) values.
Rather than try to match commuted variants of the pattern, we can canonicalize the
shuffles and check for mask equality with commuted operands.
We don't produce arbitrary shuffle masks in instcombine, but select-shuffles are a
special case that the backend is required to handle because we already canonicalize
vector select to this shuffle form.
So there should be no codegen difference from this change. It's possible that this
improves CSE in IR though.
Differential Revision: https://reviews.llvm.org/D60016
llvm-svn: 357366
|
|
|
|
|
|
|
|
|
|
|
|
| |
Part of D58593.
Compute precise overflow conditions based on all known bits, rather
than just the sign bits. Unsigned a + b overflows iff a > ~b, and we
can determine whether this always/never happens based on the minimal
and maximal values achievable for a and ~b subject to the known bits
constraint.
llvm-svn: 355072
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We established the (unfortunately complicated) rules for UB/poison
propagation with vector ops in:
D48893
D48987
D49047
It's clear from the affected tests that we are potentially creating
poison where none existed before the transforms. For add/sub/mul,
the answer is simple: just drop the flags because the extra undef
vector lanes are generally more valuable for analysis and codegen.
llvm-svn: 343819
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We're a long way from D50992 and D51553, but this is where we have to start.
We weren't back-propagating undefs into binop constant values for anything but
add/sub/mul/and/or/xor.
This is likely because we have to be careful about not introducing UB/poison
with div/rem/shift. But I suspect we already are getting the poison part wrong
for add/sub/mul (although it may not be possible to expose the bug currently
because we use SimplifyDemandedVectorElts from a limited set of opcodes).
See the discussion/implementation from D48987 and D49047.
This patch just enables functionality for FP ops because those do not have
UB/poison potential.
llvm-svn: 343727
|
|
|
|
|
|
|
| |
This corresponds with the code for the single binop pattern
added in rL336684.
llvm-svn: 336696
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was originally intended with D48893, but as discussed there, we
have to make the folds safe from producing extra poison. This should
give the single binop folds the same capabilities as the existing
folds for 2-binops+shuffle.
LLVM binary opcode review: there are a total of 18 binops. There are 7
commutative binops (add, mul, and, or, xor, fadd, fmul) which we already
fold. We're able to fold 6 more opcodes with this patch (shl, lshr, ashr,
fdiv, udiv, sdiv). There are no folds for srem/urem/frem AFAIK. We don't
bother with sub/fsub with constant operand 1 because those are
canonicalized to add/fadd. 7 + 6 + 3 + 2 = 18.
llvm-svn: 336684
|
|
|
|
| |
llvm-svn: 336679
|
|
|
|
|
|
|
|
|
|
|
|
| |
The case with 2 variables is more complicated than the case where
we eliminate the shuffle entirely because a shuffle with an undef
mask element creates an undef result.
I'm not aware of any current analysis/transform that recognizes that
undef propagating to a div/rem/shift, but we have to guard against
the possibility.
llvm-svn: 336668
|
|
|
|
|
|
|
|
|
|
| |
getSafeVectorConstantForBinop() was calling getBinOpIdentity() assuming
that the constant we wanted was operand 1 (RHS). That's wrong, but I
don't think we could expose a bug or even a suboptimal fold from that
because the callers have other guards for any binop that would have
been affected.
llvm-svn: 336617
|
|
|
|
| |
llvm-svn: 336570
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As noted in D48987, there are many different ways for this transform to go wrong.
In particular, the poison potential for shifts means we have to more careful with those ops.
I added tests to make that behavior visible for all of the different cases that I could find.
This is a partial fix. To make this review easier, I did not make changes for the single binop
pattern (handled in foldSelectShuffleWith1Binop()). I also left out some potential optimizations
noted with TODO comments. I'll follow-up once we're confident that things are correct here.
The goal is to correct all marked FIXME tests to either avoid the shuffle transform or do it safely.
Note that distinguishing when the shuffle mask contains undefs and using getBinOpIdentity() allows
for some improvements to div/rem patterns, so there are wins along with the missed opportunities
and fixes.
Differential Revision: https://reviews.llvm.org/D49047
llvm-svn: 336546
|
|
|
|
| |
llvm-svn: 336454
|
|
|
|
|
|
|
|
| |
As discussed in D48987 and D48893, there are many different
ways to go wrong depending on the binop (and as shown here
we already do go wrong in some cases).
llvm-svn: 336450
|
|
|
|
|
|
| |
This adds coverage for a planned enhancement for ConstantExpr::getBinOpIdentity() noted in D48830.
llvm-svn: 336220
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As the test diffs show, the current users of getBinOpIdentity()
are InstCombine and Reassociate. SLP vectorizer is a candidate
for using this functionality too (D28907).
The InstCombine shuffle improvements are part of the planned
enhancements noted in D48830.
InstCombine actually has several other uses of getBinOpIdentity()
via SimplifyUsingDistributiveLaws(), but we don't call that for
any FP ops. Fixing that might be another part of removing the
custom reassociation in InstCombine that is only done for fadd+fmul.
llvm-svn: 336215
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the last significant change suggested in PR37806:
https://bugs.llvm.org/show_bug.cgi?id=37806#c5
...though there are several follow-ups noted in the code comments
in this patch to complete this transform.
It's possible that a binop feeding a select-shuffle has been eliminated
by earlier transforms (or the code was just written like this in the 1st
place), so we'll fail to match the patterns that have 2 binops from:
D48401,
D48678,
D48662,
D48485.
In that case, we can try to materialize identity constants for the remaining
binop to fill in the "ghost" lanes of the vector (where we just want to pass
through the original values of the source operand).
I added comments to ConstantExpr::getBinOpIdentity() to show planned follow-ups.
For now, we only handle the 5 commutative integer binops (add/mul/and/or/xor).
Differential Revision: https://reviews.llvm.org/D48830
llvm-svn: 336196
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
folding
This extends D48485 to allow another pair of binops (add/or) to be combined either
with or without a leading shuffle:
or X, C --> add X, C (when X and C have no common bits set)
Here, we need value tracking to determine that the 'or' can be reversed into an 'add',
and we've added general infrastructure to allow extending to other opcodes or moving
to where other passes could use that functionality.
Differential Revision: https://reviews.llvm.org/D48662
llvm-svn: 336128
|
|
|
|
|
|
|
|
|
| |
Due to current limitations in constant analysis, we need flags
on add or mul to show propagation for the potential transform
suggested in these tests (no other binops currently report
identity constants).
llvm-svn: 336101
|
|
|
|
|
|
| |
This is another pattern mentioned in PR37806.
llvm-svn: 336096
|
|
|
|
|
|
|
| |
The mul+shl tests add coverage for the fold enabled with D48678.
The and+or tests are not handled yet; that's D48662.
llvm-svn: 335984
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(PR37806)
This was discussed in D48401 as another improvement for:
https://bugs.llvm.org/show_bug.cgi?id=37806
If we have 2 different variable values, then we shuffle (select) those lanes,
shuffle (select) the constants, and then perform the binop. This eliminates a binop.
The new shuffle uses the same shuffle mask as the existing shuffle, so there's no
danger of creating a difficult shuffle.
All of the earlier constraints still apply, but we also check for extra uses to
avoid creating more instructions than we'll remove.
Additionally, we're disallowing the fold for div/rem because that could expose a
UB hole.
Differential Revision: https://reviews.llvm.org/D48678
llvm-svn: 335974
|
|
|
|
|
|
| |
Use xor for the extra uses test because div/rem have other problems.
llvm-svn: 335924
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is an enhancement to D48401 that was discussed in:
https://bugs.llvm.org/show_bug.cgi?id=37806
We can convert a shift-left-by-constant into a multiply (we canonicalize IR in the other
direction because that's generally better of course). This allows us to remove the shuffle
as we do in the regular opcodes-are-the-same cases.
This requires a small hack to make sure we don't introduce any extra poison:
https://rise4fun.com/Alive/ZGv
Other examples of opcodes where this would work are add+sub and fadd+fsub, but we already
canonicalize those subs into adds, so there's nothing to do for those cases AFAICT. There
are planned enhancements for opcode transforms such or -> add.
Note that there's a different fold needed if we've already managed to simplify away a binop
as seen in the test based on PR37806, but we manage to get that one case here because this
fold is positioned above the demanded elements fold currently.
Differential Revision: https://reviews.llvm.org/D48485
llvm-svn: 335888
|
|
|
|
| |
llvm-svn: 335778
|
|
|
|
| |
llvm-svn: 335756
|
|
|
|
|
|
|
|
|
| |
This one shows another pattern that we'll need to match
in some cases, but the current ordering of folds allows
us to match this as 2 binops before simplification takes
place.
llvm-svn: 335347
|
|
|
|
| |
llvm-svn: 335345
|
|
|
|
|
|
|
|
|
| |
With non-commutative binops, we could be using the same
variable value as operand 0 in 1 binop and operand 1 in
the other, so we have to check for that possibility and
bail out.
llvm-svn: 335312
|
|
|
|
|
|
| |
This shows a miscompile that was missed in rL335283.
llvm-svn: 335311
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(PR37806)
This is the simplest case from PR37806:
https://bugs.llvm.org/show_bug.cgi?id=37806
If we have a common variable operand used in a pair of binops with vector constants
that are vector selected together, then we can constant shuffle the constant vectors
to eliminate the shuffle instruction.
This has some tricky parts that are hopefully addressed in the tests and their
respective comments:
1. If the shuffle mask contains an undef element, then that lane of the result is
undef:
http://llvm.org/docs/LangRef.html#shufflevector-instruction
Therefore, we can replace the constant in that lane with an undef value except
for div/rem. With div/rem, an undef in the divisor would cause the whole op to
be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'.
2. Intersect the wrapping and FMF of the original binops for the new binop. There
should be no extra poison or fast-math potential in the new binop that wasn't
possible in the original code.
3. Disregard other uses. Given that we're eliminating uses (shortening the
dependency chain), I think that's always the right IR canonicalization. But
I purposely chose the udiv test to demonstrate the scenario where both
intermediate values have other uses because that seems likely worse for
codegen with an expensive math op. This seems like a very rare possibility to
me, so I don't think it requires a backend patch first.
Differential Revision: https://reviews.llvm.org/D48401
llvm-svn: 335283
|
|
|
|
| |
llvm-svn: 335165
|
|
These represent the most basic requested transform - a matching
operand and 2 constant operands.
llvm-svn: 335151
|