summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/Inline/ptr-diff.ll
Commit message (Collapse)AuthorAgeFilesLines
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+157
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-157/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* Teach InlineCost about address spacesBjorn Pettersson2018-01-041-0/+51
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: I basically copied this patch from here: https://reviews.llvm.org/D1251 But I skipped some of the refactoring to make the patch more clean. The new outer3/inner3 test case in ptr-diff.ll triggers the following assert without this patch: lib/IR/Constants.cpp:1834: static llvm::Constant *llvm::ConstantExpr::getCompare(unsigned short, llvm::Constant *, llvm::Constant *, bool): Assertion `C1->getType() == C2->getType() && "Op types should be identical!"' failed. The other new test cases makes sure that there is code coverage for all modifications in InlineCost.cpp (getting different values due to not fetching sizes for address space zero). I only guarantee code coverage for those tests. The tests are not written in a way that they would break if not having the corrections in InlineCost.cpp. I found it quite hard to fine tune the tests into getting different results based on the pointer sizes (except for the test case where we hit an assert if not teaching InlineCost about address spaces). Reviewers: chandlerc, arsenm, haicheng Reviewed By: arsenm Subscribers: wdng, eraman, llvm-commits, haicheng Differential Revision: https://reviews.llvm.org/D40455 llvm-svn: 321809
* [InlineCost] Remove skew when calculating call costsJames Molloy2016-11-141-3/+8
| | | | | | | | | | | | | | | When calculating the cost of a call instruction we were applying a heuristic penalty as well as the cost of the instruction itself. However, when calculating the benefit from inlining we weren't discounting the equivalent penalty for the call instruction that would be removed! This caused skew in the calculation and meant we wouldn't inline in the following, trivial case: int g() { h(); } int f() { g(); } llvm-svn: 286814
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Fix known typosAlp Toker2014-01-241-1/+1
| | | | | | | Sweep the codebase for common typos. Includes some changes to visible function names that were misspelt. llvm-svn: 200018
* Handle address spaces in TargetTransformInfoMatt Arsenault2013-08-281-1/+44
| | | | llvm-svn: 189527
* Update Transforms tests to use CHECK-LABEL for easier debugging. No ↵Stephen Lin2013-07-141-2/+2
| | | | | | | | | | | | | | | | | | | | | | functionality change. This update was done with the following bash script: find test/Transforms -name "*.ll" | \ while read NAME; do echo "$NAME" if ! grep -q "^; *RUN: *llc" $NAME; then TEMP=`mktemp -t temp` cp $NAME $TEMP sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \ while read FUNC; do sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP done mv $TEMP $NAME fi done llvm-svn: 186268
* Initial commit for the rewrite of the inline cost analysis to operateChandler Carruth2012-03-311-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | on a per-callsite walk of the called function's instructions, in breadth-first order over the potentially reachable set of basic blocks. This is a major shift in how inline cost analysis works to improve the accuracy and rationality of inlining decisions. A brief outline of the algorithm this moves to: - Build a simplification mapping based on the callsite arguments to the function arguments. - Push the entry block onto a worklist of potentially-live basic blocks. - Pop the first block off of the *front* of the worklist (for breadth-first ordering) and walk its instructions using a custom InstVisitor. - For each instruction's operands, re-map them based on the simplification mappings available for the given callsite. - Compute any simplification possible of the instruction after re-mapping, and store that back int othe simplification mapping. - Compute any bonuses, costs, or other impacts of the instruction on the cost metric. - When the terminator is reached, replace any conditional value in the terminator with any simplifications from the mapping we have, and add any successors which are not proven to be dead from these simplifications to the worklist. - Pop the next block off of the front of the worklist, and repeat. - As soon as the cost of inlining exceeds the threshold for the callsite, stop analyzing the function in order to bound cost. The primary goal of this algorithm is to perfectly handle dead code paths. We do not want any code in trivially dead code paths to impact inlining decisions. The previous metric was *extremely* flawed here, and would always subtract the average cost of two successors of a conditional branch when it was proven to become an unconditional branch at the callsite. There was no handling of wildly different costs between the two successors, which would cause inlining when the path actually taken was too large, and no inlining when the path actually taken was trivially simple. There was also no handling of the code *path*, only the immediate successors. These problems vanish completely now. See the added regression tests for the shiny new features -- we skip recursive function calls, SROA-killing instructions, and high cost complex CFG structures when dead at the callsite being analyzed. Switching to this algorithm required refactoring the inline cost interface to accept the actual threshold rather than simply returning a single cost. The resulting interface is pretty bad, and I'm planning to do lots of interface cleanup after this patch. Several other refactorings fell out of this, but I've tried to minimize them for this patch. =/ There is still more cleanup that can be done here. Please point out anything that you see in review. I've worked really hard to try to mirror at least the spirit of all of the previous heuristics in the new model. It's not clear that they are all correct any more, but I wanted to minimize the change in this single patch, it's already a bit ridiculous. One heuristic that is *not* yet mirrored is to allow inlining of functions with a dynamic alloca *if* the caller has a dynamic alloca. I will add this back, but I think the most reasonable way requires changes to the inliner itself rather than just the cost metric, and so I've deferred this for a subsequent patch. The test case is XFAIL-ed until then. As mentioned in the review mail, this seems to make Clang run about 1% to 2% faster in -O0, but makes its binary size grow by just under 4%. I've looked into the 4% growth, and it can be fixed, but requires changes to other parts of the inliner. llvm-svn: 153812
* Extend the inline cost calculation to account for bonuses due toChandler Carruth2012-03-141-0/+56
correlated pairs of pointer arguments at the callsite. This is designed to recognize the common C++ idiom of begin/end pointer pairs when the end pointer is a constant offset from the begin pointer. With the C-based idiom of a pointer and size, the inline cost saw the constant size calculation, and this provides the same level of information for begin/end pairs. In order to propagate this information we have to search for candidate operations on a pair of pointer function arguments (or derived from them) which would be simplified if the pointers had a known constant offset. Then the callsite analysis looks for such pointer pairs in the argument list, and applies the appropriate bonus. This helps LLVM detect that half of bounds-checked STL algorithms (such as hash_combine_range, and some hybrid sort implementations) disappear when inlined with a constant size input. However, it's not a complete fix due the inaccuracy of our cost metric for constants in general. I'm looking into that next. Benchmarks showed no significant code size change, and very minor performance changes. However, specific code such as hashing is showing significantly cleaner inlining decisions. llvm-svn: 152752
OpenPOWER on IntegriCloud