summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/GCOVProfiling/function-numbering.ll
Commit message (Collapse)AuthorAgeFilesLines
* Revert "Temporarily Revert "Add basic loop fusion pass.""Eric Christopher2019-04-171-0/+123
| | | | | | | | The reversion apparently deleted the test/Transforms directory. Will be re-reverting again. llvm-svn: 358552
* Temporarily Revert "Add basic loop fusion pass."Eric Christopher2019-04-171-123/+0
| | | | | | | | As it's causing some bot failures (and per request from kbarton). This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda. llvm-svn: 358546
* [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.Shiva Chen2018-05-091-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to set breakpoints on labels and list source code around labels, we need collect debug information for labels, i.e., label name, the function label belong, line number in the file, and the address label located. In order to keep these information in LLVM IR and to allow backend to generate debug information correctly. We create a new kind of metadata for labels, DILabel. The format of DILabel is !DILabel(scope: !1, name: "foo", file: !2, line: 3) We hope to keep debug information as much as possible even the code is optimized. So, we create a new kind of intrinsic for label metadata to avoid the metadata is eliminated with basic block. The intrinsic will keep existing if we keep it from optimized out. The format of the intrinsic is llvm.dbg.label(metadata !1) It has only one argument, that is the DILabel metadata. The intrinsic will follow the label immediately. Backend could get the label metadata through the intrinsic's parameter. We also create DIBuilder API for labels to be used by Frontend. Frontend could use createLabel() to allocate DILabel objects, and use insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR. Differential Revision: https://reviews.llvm.org/D45024 Patch by Hsiangkai Wang. llvm-svn: 331841
* [GCOV] Emit the writeout function as nested loops of global data.Chandler Carruth2018-05-021-3/+66
| | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: Prior to this change, LLVM would in some cases emit *massive* writeout functions with many 10s of 1000s of function calls in straight-line code. This is a very wasteful way to represent what are fundamentally loops and creates a number of scalability issues. Among other things, register allocating these calls is extremely expensive. While D46127 makes this less severe, we'll still run into scaling issues with this eventually. If not in the compile time, just from the code size. Now the pass builds up global data structures modeling the inputs to these functions, and simply loops over the data structures calling the relevant functions with those values. This ensures that the code size is a fixed and only data size grows with larger amounts of coverage data. A trivial change to IRBuilder is included to make it easier to build the constants that make up the global data. Reviewers: wmi, echristo Subscribers: sanjoy, mcrosier, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D46357 llvm-svn: 331407
* [llvm] Get rid of "%T" expansionsKuba Mracek2017-08-151-7/+8
| | | | | | | | | | The %T lit expansion expands to a common directory shared between all the tests in the same directory, which is unexpected and unintuitive, and more importantly, it's been a source of subtle race conditions and flaky tests. In https://reviews.llvm.org/D35396, it was agreed that it would be best to simply ban %T and only keep %t, which is unique to each test. When a test needs a temporary directory, it can just create one using mkdir %t. This patch removes %T in llvm. Differential Revision: https://reviews.llvm.org/D36495 llvm-svn: 310953
* [PM] Port GCOVProfiler pass to the new pass managerXinliang David Li2016-06-051-0/+4
| | | | llvm-svn: 271823
* [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.Adrian Prantl2016-04-151-5/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each Function points to a DISubprogram and DISubprogram has a scope field. For member functions the scope is a DICompositeType. DIScopes point to the DICompileUnit to facilitate type uniquing. Distinct DISubprograms (with isDefinition: true) are not part of the type hierarchy and cannot be uniqued. This change removes the subprograms list from DICompileUnit and instead adds a pointer to the owning compile unit to distinct DISubprograms. This would make it easy for ThinLTO to strip unneeded DISubprograms and their transitively referenced debug info. Motivation ---------- Materializing DISubprograms is currently the most expensive operation when doing a ThinLTO build of clang. We want the DISubprogram to be stored in a separate Bitcode block (or the same block as the function body) so we can avoid having to expensively deserialize all DISubprograms together with the global metadata. If a function has been inlined into another subprogram we need to store a reference the block containing the inlined subprogram. Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script that updates LLVM IR testcases to the new format. http://reviews.llvm.org/D19034 <rdar://problem/25256815> llvm-svn: 266446
* testcase gardening: update the emissionKind enum to the new syntax. (NFC)Adrian Prantl2016-04-011-1/+1
| | | | llvm-svn: 265081
* DI: Reverse direction of subprogram -> function edge.Peter Collingbourne2015-11-051-6/+6
| | | | | | | | | | | | | | | | | | | | | | | Previously, subprograms contained a metadata reference to the function they described. Because most clients need to get or set a subprogram for a given function rather than the other way around, this created unneeded inefficiency. For example, many passes needed to call the function llvm::makeSubprogramMap() to build a mapping from functions to subprograms, and the IR linker needed to fix up function references in a way that caused quadratic complexity in the IR linking phase of LTO. This change reverses the direction of the edge by storing the subprogram as function-level metadata and removing DISubprogram's function field. Since this is an IR change, a bitcode upgrade has been provided. Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is attached to the PR. Differential Revision: http://reviews.llvm.org/D14265 llvm-svn: 252219
* DI: Require subprogram definitions to be distinctDuncan P. N. Exon Smith2015-08-281-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | As a follow-up to r246098, require `DISubprogram` definitions (`isDefinition: true`) to be 'distinct'. Specifically, add an assembler check, a verifier check, and bitcode upgrading logic to combat testcase bitrot after the `DIBuilder` change. While working on the testcases, I realized that test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its purpose was to check for a corner case in PR22792 where two subprogram definitions match exactly and share the same metadata node. The new verifier check, requiring that subprogram definitions are 'distinct', precludes that possibility. I updated almost all the IR with the following script: git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' | grep -v test/Bitcode | xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/' Likely some variant of would work for out-of-tree testcases. llvm-svn: 246327
* DI: Disallow uniquable DICompileUnitsDuncan P. N. Exon Smith2015-08-031-1/+1
| | | | | | | | | | | | | | | | | | Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s. The backend is liable to start relying on that (if it hasn't already), so make uniquable `DICompileUnit`s illegal and automatically upgrade old bitcode. This is a nice cleanup, since we can remove an unnecessary `DenseSet` (and the associated uniquing info) from `LLVMContextImpl`. Almost all the testcases were updated with this script: git grep -e '= !DICompileUnit' -l -- test | grep -v test/Bitcode | xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,' I imagine something similar should work for out-of-tree testcases. llvm-svn: 243885
* IR: Give 'DI' prefix to debug info metadataDuncan P. N. Exon Smith2015-04-291-9/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Finish off PR23080 by renaming the debug info IR constructs from `MD*` to `DI*`. The last of the `DIDescriptor` classes were deleted in r235356, and the last of the related typedefs removed in r235413, so this has all baked for about a week. Note: If you have out-of-tree code (like a frontend), I recommend that you get everything compiling and tests passing with the *previous* commit before updating to this one. It'll be easier to keep track of what code is using the `DIDescriptor` hierarchy and what you've already updated, and I think you're extremely unlikely to insert bugs. YMMV of course. Back to *this* commit: I did this using the rename-md-di-nodes.sh upgrade script I've attached to PR23080 (both code and testcases) and filtered through clang-format-diff.py. I edited the tests for test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns were off-by-three. It should work on your out-of-tree testcases (and code, if you've followed the advice in the previous paragraph). Some of the tests are in badly named files now (e.g., test/Assembler/invalid-mdcompositetype-missing-tag.ll should be 'dicompositetype'); I'll come back and move the files in a follow-up commit. llvm-svn: 236120
* Update a test I missed in r233132Justin Bogner2015-03-241-1/+1
| | | | llvm-svn: 233134
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-03-131-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | gep operator Similar to gep (r230786) and load (r230794) changes. Similar migration script can be used to update test cases, which successfully migrated all of LLVM and Polly, but about 4 test cases needed manually changes in Clang. (this script will read the contents of stdin and massage it into stdout - wrap it in the 'apply.sh' script shown in previous commits + xargs to apply it over a large set of test cases) import fileinput import sys import re rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL) def conv(match): line = match.group(1) line += match.group(4) line += ", " line += match.group(2) return line line = sys.stdin.read() off = 0 for match in re.finditer(rep, line): sys.stdout.write(line[off:match.start()]) sys.stdout.write(conv(match)) off = match.end() sys.stdout.write(line[off:]) llvm-svn: 232184
* DebugInfo: Move new hierarchy into placeDuncan P. N. Exon Smith2015-03-031-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the specialized metadata nodes for the new debug info hierarchy into place, finishing off PR22464. I've done bootstraps (and all that) and I'm confident this commit is NFC as far as DWARF output is concerned. Let me know if I'm wrong :). The code changes are fairly mechanical: - Bumped the "Debug Info Version". - `DIBuilder` now creates the appropriate subclass of `MDNode`. - Subclasses of DIDescriptor now expect to hold their "MD" counterparts (e.g., `DIBasicType` expects `MDBasicType`). - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp` for printing comments. - Big update to LangRef to describe the nodes in the new hierarchy. Feel free to make it better. Testcase changes are enormous. There's an accompanying clang commit on its way. If you have out-of-tree debug info testcases, I just broke your build. - `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to update all the IR testcases. - Unfortunately I failed to find way to script the updates to CHECK lines, so I updated all of these by hand. This was fairly painful, since the old CHECKs are difficult to reason about. That's one of the benefits of the new hierarchy. This work isn't quite finished, BTW. The `DIDescriptor` subclasses are almost empty wrappers, but not quite: they still have loose casting checks (see the `RETURN_FROM_RAW()` macro). Once they're completely gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I also expect to make a few schema changes now that it's easier to reason about everything. llvm-svn: 231082
* IR: Move MDLocation into placeDuncan P. N. Exon Smith2015-01-141-2/+2
| | | | | | | | | | | | | | | | | | | | This commit moves `MDLocation`, finishing off PR21433. There's an accompanying clang commit for frontend testcases. I'll attach the testcase upgrade script I used to PR21433 to help out-of-tree frontends/backends. This changes the schema for `DebugLoc` and `DILocation` from: !{i32 3, i32 7, !7, !8} to: !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8) Note that empty fields (line/column: 0 and inlinedAt: null) don't get printed by the assembly writer. llvm-svn: 226048
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-151-15/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* GCOV: Make sure that function idents in the .gcda and .gcno matchJustin Bogner2014-11-061-0/+56
When generating gcov compatible profiling, we sometimes skip emitting data for functions for one reason or another. However, this was emitting different function IDs in the .gcno and .gcda files, because the .gcno case was using the loop index before skipping functions and the .gcda the array index after. This resulted in completely invalid gcov data. This fixes the problem by making the .gcno loop track the ID separately from the loop index. llvm-svn: 221441
OpenPOWER on IntegriCloud