| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
as cleanups after D56351
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In MVE, as of rL371218, we are attempting to sink chains of instructions such as:
%l1 = insertelement <8 x i8> undef, i8 %l0, i32 0
%broadcast.splat26 = shufflevector <8 x i8> %l1, <8 x i8> undef, <8 x i32> zeroinitializer
In certain situations though, we can end up breaking the dominance relations of
instructions. This happens when we sink the instruction into a loop, but cannot
remove the originals. The Use is updated, which might in fact be a Use from the
second instruction to the first.
This attempts to fix that by reversing the order of instruction that are sunk,
and ensuring that we update the uses on new instructions if they have already
been sunk, not the old ones.
Differential Revision: https://reviews.llvm.org/D67366
llvm-svn: 371743
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch sinks add/mul(shufflevector(insertelement())) into the basic block in which they are used so that they can then be selected together.
This is useful for various MVE instructions, such as vmla and others that take R registers.
Loop tests have been added to the vmla test file to make sure vmlas are generated in loops.
Differential revision: https://reviews.llvm.org/D66295
llvm-svn: 371218
|
|
|
|
| |
llvm-svn: 363538
|
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Inserting an overflowing arithmetic intrinsic can increase register
pressure by producing two values at a point where only one is needed,
while the second use maybe several blocks away. This increase in
pressure is likely to be more detrimental on performance than
rematerialising one of the original instructions.
So, check that the arithmetic and compare instructions are no further
apart than their immediate successor/predecessor.
Differential Revision: https://reviews.llvm.org/D59024
llvm-svn: 355823
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This uses the infrastructure added in rL353152 to sink zext and sexts to
sub/add users, to enable vsubl/vaddl generation when NEON is available.
See https://bugs.llvm.org/show_bug.cgi?id=40025.
Reviewers: SjoerdMeijer, t.p.northover, samparker, efriedma
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D58063
llvm-svn: 355460
|
|
|
|
|
|
|
|
|
| |
compiler identification lines in test-cases.
(Doing so only because it's then easier to search for references which
are actually important and need fixing.)
llvm-svn: 351200
|
|
|
|
|
|
|
|
|
|
|
| |
Adding NonNull as attributes to returned pointers has the unfortunate side
effect of disabling tail calls. This patch ignores the NonNull attribute when
we decide whether to tail merge, in the same way that we ignore the NoAlias
attribute, as it has no affect on the call sequence.
Differential Revision: https://reviews.llvm.org/D52238
llvm-svn: 343091
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The output of splitLargeGEPOffsets does not appear to be deterministic because
of the way that we iterate over a DenseMap. I've changed it to a MapVector for
consistent output.
The test here isn't particularly great, only showing a consmetic difference in
output. The original reproducer is much larger but show a diffierence in
instruction ordering, leading to different codegen.
Differential Revision: https://reviews.llvm.org/D51851
llvm-svn: 342043
|
|
|
|
|
|
|
|
|
|
|
| |
It has essentially the same benefit it has on 64-bit ARM: it
substantially reduces the number of constants used by large GEP
operations. Seems to be generally helpful across a few different
codebases I've tried.
Differential Revision: https://reviews.llvm.org/D51462
llvm-svn: 341136
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
independently
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
CodeGenPrepare pass to be more aggressive in improving the source and destination alignments
of memcpy/memmove/memset by exploiting our new ability to record independent alignments
for each argument.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 323891
|
|
|
|
|
|
|
|
|
|
|
| |
The current way that trivial addressing modes are detected incorrectly thinks
that null pointers are non-trivial, leading to an infinite loop where we keep
duplicating the same select. Fix this by aware of null when deciding if an
addressing mode is trivial.
Differential Revision: https://reviews.llvm.org/D40447
llvm-svn: 319019
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch extends the recent work in optimizeMemoryInst to make it able to
combine more ExtAddrMode fields than just the BaseReg.
This fixes some benchmark regressions introduced by r309397, where GVN PRE is
hoisting a getelementptr such that it can no longer be combined into the
addressing mode of the load or store that uses it.
Differential Revision: https://reviews.llvm.org/D38133
llvm-svn: 318949
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch disables the handling of selects in optimization
extensing scope of optimizeMemoryInst.
The optimization itself is disable by default.
The idea here is just to switch optimiztion level step by step.
Specifically, first optimization will be enabled only for Phi nodes,
then select instructions will be added.
In case someone will complain about perfromance it will be easier to
detect what part of optimizations is responsible for that.
Differential Revision: https://reviews.llvm.org/D36073
llvm-svn: 317555
|
|
|
|
|
|
|
|
|
|
|
| |
Commit tests for previous commit.
Reviewers: efriedma, dberlin, mkazantsev, reames, john.brawn
Reviewed By: john.brawn
Subscribers: javed.absar, john.brawn, dneilson, llvm-commits
Differential Revision: https://reviews.llvm.org/D36073
llvm-svn: 317430
|
|
There are several requirements that ended up with this design;
1. Matching bitreversals is too heavyweight for InstCombine and doesn't really need to be done so early.
2. Bitreversals and byteswaps are very related in their matching logic.
3. We want to implement support for matching more advanced bswap/bitreverse patterns like partial bswaps/bitreverses.
4. Bswaps are best matched early in InstCombine.
The result of these is that a new utility function is created in Transforms/Utils/Local.h that can be configured to search for bswaps, bitreverses or both. InstCombine uses it to find only bswaps, CGP uses it to find only bitreversals.
We can then extend the matching logic in one place only.
llvm-svn: 257875
|