summaryrefslogtreecommitdiffstats
path: root/llvm/test/Instrumentation/ThreadSanitizer
Commit message (Collapse)AuthorAgeFilesLines
* Insert module constructors in a module passVitaly Buka2019-10-111-1/+1
| | | | | | | | | | | | | | | | | | | | | Summary: If we insert them from function pass some analysis may be missing or invalid. Fixes PR42877. Reviewers: eugenis, leonardchan Reviewed By: leonardchan Subscribers: hiraditya, cfe-commits, llvm-commits Tags: #clang, #llvm Differential Revision: https://reviews.llvm.org/D68832 > llvm-svn: 374481 Signed-off-by: Vitaly Buka <vitalybuka@google.com> llvm-svn: 374527
* Revert 374481 "[tsan,msan] Insert module constructors in a module pass"Nico Weber2019-10-111-1/+1
| | | | | | | CodeGen/sanitizer-module-constructor.c fails on mac and windows, see e.g. http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/11424 llvm-svn: 374503
* [tsan,msan] Insert module constructors in a module passVitaly Buka2019-10-101-1/+1
| | | | | | | | | | | | | | | | | | Summary: If we insert them from function pass some analysis may be missing or invalid. Fixes PR42877. Reviewers: eugenis, leonardchan Reviewed By: leonardchan Subscribers: hiraditya, cfe-commits, llvm-commits Tags: #clang, #llvm Differential Revision: https://reviews.llvm.org/D68832 llvm-svn: 374481
* [NewPM][TSan] Reiterate the TSan portPhilip Pfaffe2019-01-161-1/+1
| | | | | | | | | | | | | | | | | | | Summary: Second iteration of D56433 which got reverted in rL350719. The problem in the previous version was that we dropped the thunk calling the tsan init function. The new version keeps the thunk which should appease dyld, but is not actually OK wrt. the current semantics of function passes. Hence, add a helper to insert the functions only on the first time. The helper allows hooking into the insertion to be able to append them to the global ctors list. Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan Subscribers: hiraditya, bollu, llvm-commits Differential Revision: https://reviews.llvm.org/D56538 llvm-svn: 351314
* Revert r350647: "[NewPM] Port tsan"Florian Hahn2019-01-091-2/+4
| | | | | | | This patch breaks thread sanitizer on some macOS builders, e.g. http://green.lab.llvm.org/green/job/clang-stage1-configure-RA/52725/ llvm-svn: 350719
* [NewPM] Port tsanPhilip Pfaffe2019-01-081-4/+2
| | | | | | | | | A straightforward port of tsan to the new PM, following the same path as D55647. Differential Revision: https://reviews.llvm.org/D56433 llvm-svn: 350647
* [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.Shiva Chen2018-05-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to set breakpoints on labels and list source code around labels, we need collect debug information for labels, i.e., label name, the function label belong, line number in the file, and the address label located. In order to keep these information in LLVM IR and to allow backend to generate debug information correctly. We create a new kind of metadata for labels, DILabel. The format of DILabel is !DILabel(scope: !1, name: "foo", file: !2, line: 3) We hope to keep debug information as much as possible even the code is optimized. So, we create a new kind of intrinsic for label metadata to avoid the metadata is eliminated with basic block. The intrinsic will keep existing if we keep it from optimized out. The format of the intrinsic is llvm.dbg.label(metadata !1) It has only one argument, that is the DILabel metadata. The intrinsic will follow the label immediately. Backend could get the label metadata through the intrinsic's parameter. We also create DIBuilder API for labels to be used by Frontend. Frontend could use createLabel() to allocate DILabel objects, and use insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR. Differential Revision: https://reviews.llvm.org/D45024 Patch by Hsiangkai Wang. llvm-svn: 331841
* Remove alignment argument from memcpy/memmove/memset in favour of alignment ↵Daniel Neilson2018-01-191-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
* Enhance synchscope representationKonstantin Zhuravlyov2017-07-111-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | OpenCL 2.0 introduces the notion of memory scopes in atomic operations to global and local memory. These scopes restrict how synchronization is achieved, which can result in improved performance. This change extends existing notion of synchronization scopes in LLVM to support arbitrary scopes expressed as target-specific strings, in addition to the already defined scopes (single thread, system). The LLVM IR and MIR syntax for expressing synchronization scopes has changed to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this replaces *singlethread* keyword), or a target-specific name. As before, if the scope is not specified, it defaults to CrossThread/System scope. Implementation details: - Mapping from synchronization scope name/string to synchronization scope id is stored in LLVM context; - CrossThread/System and SingleThread scopes are pre-defined to efficiently check for known scopes without comparing strings; - Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in the bitcode. Differential Revision: https://reviews.llvm.org/D21723 llvm-svn: 307722
* ThreadSanitizer: don't track swifterror memory addressesArnold Schwaighofer2017-02-151-0/+24
| | | | | | | | | | | | | | They are register promoted by ISel and so it makes no sense to treat them as memory. Inserting calls to the thread sanitizer would also generate invalid IR. You would hit: "swifterror value can only be loaded and stored from, or as a swifterror argument!" llvm-svn: 295215
* [Verifier] Add verification for TBAA metadataSanjoy Das2016-12-113-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: This change adds some verification in the IR verifier around struct path TBAA metadata. Other than some basic sanity checks (e.g. we get constant integers where we expect constant integers), this checks: - That by the time an struct access tuple `(base-type, offset)` is "reduced" to a scalar base type, the offset is `0`. For instance, in C++ you can't start from, say `("struct-a", 16)`, and end up with `("int", 4)` -- by the time the base type is `"int"`, the offset better be zero. In particular, a variant of this invariant is needed for `llvm::getMostGenericTBAA` to be correct. - That there are no cycles in a struct path. - That struct type nodes have their offsets listed in an ascending order. - That when generating the struct access path, you eventually reach the access type listed in the tbaa tag node. Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren Subscribers: mcrosier, llvm-commits Differential Revision: https://reviews.llvm.org/D26438 llvm-svn: 289402
* [tsan] Add support for C++ exceptions into TSan (call __tsan_func_exit ↵Kuba Brecka2016-11-144-9/+66
| | | | | | | | | | during unwinding), LLVM part This adds support for TSan C++ exception handling, where we need to add extra calls to __tsan_func_exit when a function is exitted via exception mechanisms. Otherwise the shadow stack gets corrupted (leaked). This patch moves and enhances the existing implementation of EscapeEnumerator that finds all possible function exit points, and adds extra EH cleanup blocks where needed. Differential Revision: https://reviews.llvm.org/D26177 llvm-svn: 286893
* [tsan][llvm] Implement the function attribute to disable TSan checking at ↵Anna Zaks2016-11-111-0/+35
| | | | | | | | | | | | | | | | | | | | | | | run time This implements a function annotation that disables TSan checking for the function at run time. The benefit over attribute((no_sanitize("thread"))) is that the accesses within the callees will also be suppressed. The motivation for this attribute is a guarantee given by the objective C language that the calls to the reference count decrement and object deallocation will be synchronized. To model this properly, we would need to intercept all ref count decrement calls (which are very common in ObjC due to use of ARC) and also every single message send. Instead, we propose to just ignore all accesses made from within dealloc at run time. The main downside is that this still does not introduce any synchronization, which means we might still report false positives if the code that relies on this synchronization is not executed from within dealloc. However, we have not seen this in practice so far and think these cases will be very rare. Differential Revision: https://reviews.llvm.org/D25858 llvm-svn: 286663
* [tsan] Cast floating-point types correctly when instrumenting atomic ↵Kuba Brecka2016-11-071-0/+51
| | | | | | | | | | accesses, LLVM part Although rare, atomic accesses to floating-point types seem to be valid, i.e. `%a = load atomic float ...`. The TSan instrumentation pass however tries to emit inttoptr, which is incorrect, we should use a bitcast here. Anyway, IRBuilder already has a convenient helper function for this. Differential Revision: https://reviews.llvm.org/D26266 llvm-svn: 286135
* [tsan] Don't instrument __llvm_gcov_global_state_pred or __llvm_gcda*Vedant Kumar2016-07-191-0/+13
| | | | | | | | | | r274801 did not go far enough to allow gcov+tsan to cooperate. With this commit it's possible to run the following code without false positives: std::thread T1(fib), T2(fib); T1.join(); T2.join(); llvm-svn: 276015
* [tsan] Try harder to not instrument gcov countersVedant Kumar2016-07-071-0/+5
| | | | | | | | GCOVProfiler::emitProfileArcs() can create many variables with names starting with "__llvm_gcov_ctr", so llvm appends a numeric suffix to most of them. Teach tsan about this. llvm-svn: 274801
* [asan] Do not instrument pointers with address space attributesAnna Zaks2016-06-221-0/+33
| | | | | | | | | Do not instrument pointers with address space attributes since we cannot track them anyway. Instrumenting them results in false positives in ASan and a compiler crash in TSan. (The compiler should not crash in any case, but that's a different problem.) llvm-svn: 273339
* [tsan] Do not instrument accesses to the gcov counters arrayVedant Kumar2016-06-201-0/+8
| | | | | | | | There is a known intended race here. This is a follow-up to r264805, which disabled tsan instrumentation for updates to instrprof counters. For more background on this please see the discussion in D18164. llvm-svn: 273202
* [sanitizers] Disable target-specific lowering of string functions.Marcin Koscielnicki2016-06-181-0/+33
| | | | | | | | | | | | CodeGen has hooks that allow targets to emit specialized code instead of calls to memcmp, memchr, strcpy, stpcpy, strcmp, strlen, strnlen. When ASan/MSan/TSan/ESan is in use, this sidesteps its interceptors, resulting in uninstrumented memory accesses. To avoid that, make these sanitizers mark the calls as nobuiltin. Differential Revision: http://reviews.llvm.org/D19781 llvm-svn: 273083
* [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.Adrian Prantl2016-04-151-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each Function points to a DISubprogram and DISubprogram has a scope field. For member functions the scope is a DICompositeType. DIScopes point to the DICompileUnit to facilitate type uniquing. Distinct DISubprograms (with isDefinition: true) are not part of the type hierarchy and cannot be uniqued. This change removes the subprograms list from DICompileUnit and instead adds a pointer to the owning compile unit to distinct DISubprograms. This would make it easy for ThinLTO to strip unneeded DISubprograms and their transitively referenced debug info. Motivation ---------- Materializing DISubprograms is currently the most expensive operation when doing a ThinLTO build of clang. We want the DISubprogram to be stored in a separate Bitcode block (or the same block as the function body) so we can avoid having to expensively deserialize all DISubprograms together with the global metadata. If a function has been inlined into another subprogram we need to store a reference the block containing the inlined subprogram. Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script that updates LLVM IR testcases to the new format. http://reviews.llvm.org/D19034 <rdar://problem/25256815> llvm-svn: 266446
* [DebugInfo] Fix tests so that each subprogram belongs to a CU.Davide Italiano2016-04-051-0/+7
| | | | llvm-svn: 265490
* [tsan] Do not instrument reads/writes to instruction profile counters.Anna Zaks2016-03-291-0/+33
| | | | | | | | | We have known races on profile counters, which can be reproduced by enabling -fsanitize=thread and -fprofile-instr-generate simultaneously on a multi-threaded program. This patch avoids reporting those races by not instrumenting the reads and writes coming from the instruction profiler. llvm-svn: 264805
* [tsan] Add support for pointer typed atomic stores, loads, and cmpxchgAnna Zaks2016-03-071-0/+35
| | | | | | | | | | TSan instrumentation functions for atomic stores, loads, and cmpxchg work on integer value types. This patch adds casts before calling TSan instrumentation functions in cases where the value is a pointer. Differential Revision: http://reviews.llvm.org/D17833 llvm-svn: 262876
* Revert "Change memcpy/memset/memmove to have dest and source alignments."Pete Cooper2015-11-191-6/+6
| | | | | | | | | | This reverts commit r253511. This likely broke the bots in http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202 http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787 llvm-svn: 253543
* Change memcpy/memset/memmove to have dest and source alignments.Pete Cooper2015-11-181-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html These intrinsics currently have an explicit alignment argument which is required to be a constant integer. It represents the alignment of the source and dest, and so must be the minimum of those. This change allows source and dest to each have their own alignments by using the alignment attribute on their arguments. The alignment argument itself is removed. There are a few places in the code for which the code needs to be checked by an expert as to whether using only src/dest alignment is safe. For those places, they currently take the minimum of src/dest alignments which matches the current behaviour. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false) will now read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false) For out of tree owners, I was able to strip alignment from calls using sed by replacing: (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\) with: $1i1 false) and similarly for memmove and memcpy. I then added back in alignment to test cases which needed it. A similar commit will be made to clang which actually has many differences in alignment as now IRBuilder can generate different source/dest alignments on calls. In IRBuilder itself, a new argument was added. Instead of calling: CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false) you now call CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false) There is a temporary class (IntegerAlignment) which takes the source alignment and rejects implicit conversion from bool. This is to prevent isVolatile here from passing its default parameter to the source alignment. Note, changes in future can now be made to codegen. I didn't change anything here, but this change should enable better memcpy code sequences. Reviewed by Hal Finkel. llvm-svn: 253511
* DI: Require subprogram definitions to be distinctDuncan P. N. Exon Smith2015-08-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | As a follow-up to r246098, require `DISubprogram` definitions (`isDefinition: true`) to be 'distinct'. Specifically, add an assembler check, a verifier check, and bitcode upgrading logic to combat testcase bitrot after the `DIBuilder` change. While working on the testcases, I realized that test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its purpose was to check for a corner case in PR22792 where two subprogram definitions match exactly and share the same metadata node. The new verifier check, requiring that subprogram definitions are 'distinct', precludes that possibility. I updated almost all the IR with the following script: git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' | grep -v test/Bitcode | xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/' Likely some variant of would work for out-of-tree testcases. llvm-svn: 246327
* Let llvm::ReplaceInstWithInst copy debug location from old to new instruction.Alexey Samsonov2015-06-231-992/+1003
| | | | | | | | | | | | | | Currently some users of this function do this explicitly, and all the rest forget to do this. ThreadSanitizer was one of such users, and had missing debug locations for calls into TSan runtime handling atomic operations, eventually leading to poorly symbolized stack traces and malfunctioning suppressions. This is another change relevant to PR23837. llvm-svn: 240460
* TSan: Use `createSanitizerCtor` to create ctor, and call `__tsan_init`Ismail Pazarbasi2015-05-071-1/+4
| | | | | | | | | | Reviewers: kcc, dvyukov Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D8779 llvm-svn: 236778
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-03-131-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | gep operator Similar to gep (r230786) and load (r230794) changes. Similar migration script can be used to update test cases, which successfully migrated all of LLVM and Polly, but about 4 test cases needed manually changes in Clang. (this script will read the contents of stdin and massage it into stdout - wrap it in the 'apply.sh' script shown in previous commits + xargs to apply it over a large set of test cases) import fileinput import sys import re rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL) def conv(match): line = match.group(1) line += match.group(4) line += ", " line += match.group(2) return line line = sys.stdin.read() off = 0 for match in re.finditer(rep, line): sys.stdout.write(line[off:match.start()]) sys.stdout.write(conv(match)) off = match.end() sys.stdout.write(line[off:]) llvm-svn: 232184
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-279-48/+48
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* tsan: do not instrument not captured valuesDmitry Vyukov2015-02-121-0/+91
| | | | | | | | | | | | | | | | I've built some tests in WebRTC with and without this change. With this change number of __tsan_read/write calls is reduced by 20-40%, binary size decreases by 5-10% and execution time drops by ~5%. For example: $ ls -l old/modules_unittests new/modules_unittests -rwxr-x--- 1 dvyukov 41708976 Jan 20 18:35 old/modules_unittests -rwxr-x--- 1 dvyukov 38294008 Jan 20 18:29 new/modules_unittests $ objdump -d old/modules_unittests | egrep "callq.*__tsan_(read|write|unaligned)" | wc -l 239871 $ objdump -d new/modules_unittests | egrep "callq.*__tsan_(read|write|unaligned)" | wc -l 148365 http://reviews.llvm.org/D7069 llvm-svn: 228917
* tsan: properly instrument unaligned accessesDmitry Vyukov2015-01-271-0/+143
| | | | | | | | | | | If a memory access is unaligned, emit __tsan_unaligned_read/write callbacks instead of __tsan_read/write. Required to change semantics of __tsan_unaligned_read/write to not do the user memory. But since they were unused (other than through __sanitizer_unaligned_load/store) this is fine. Fixes long standing issue 17: https://code.google.com/p/thread-sanitizer/issues/detail?id=17 llvm-svn: 227231
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-153-9/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* [TSan] Fixup a test case after r209939Alexey Samsonov2014-05-311-3/+3
| | | | llvm-svn: 209945
* IR: add a second ordering operand to cmpxhg for failureTim Northover2014-03-111-25/+25
| | | | | | | | | | | | | | | The syntax for "cmpxchg" should now look something like: cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic where the second ordering argument gives the required semantics in the case that no exchange takes place. It should be no stronger than the first ordering constraint and cannot be either "release" or "acq_rel" (since no store will have taken place). rdar://problem/15996804 llvm-svn: 203559
* [tsan] fix PR18146: sometimes a variable written into vptr could have an ↵Kostya Serebryany2013-12-051-0/+10
| | | | | | integer type (after other optimizations) llvm-svn: 196507
* [tsan] fix instrumentation of vector vptr updates ↵Kostya Serebryany2013-12-021-0/+17
| | | | | | (https://code.google.com/p/thread-sanitizer/issues/detail?id=43) llvm-svn: 196079
* tsan: implement no_sanitize_thread attributeDmitry Vyukov2013-10-176-10/+46
| | | | | | | If a function has no_sanitize_thread attribute, do not instrument memory accesses in it. llvm-svn: 192871
* TBAA: handle scalar TBAA format and struct-path aware TBAA format.Manman Ren2013-09-273-10/+8
| | | | | | | | | | | | | | | | Remove the command line argument "struct-path-tbaa" since we should not depend on command line argument to decide which format the IR file is using. Instead, we check the first operand of the tbaa tag node, if it is a MDNode, we treat it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA format. When clang starts to use struct-path aware TBAA format no matter whether struct-path-tbaa is no, and we can auto-upgrade existing bc files, the support for scalar TBAA format can be dropped. Existing testing cases are updated to use the struct-path aware TBAA format. llvm-svn: 191538
* [tests] Cleanup initialization of test suffixes.Daniel Dunbar2013-08-161-1/+0
| | | | | | | | | | | | | | | | | - Instead of setting the suffixes in a bunch of places, just set one master list in the top-level config. We now only modify the suffix list in a few suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py). - Aside from removing the need for a bunch of lit.local.cfg files, this enables 4 tests that were inadvertently being skipped (one in Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been XFAILED). - This commit also fixes a bunch of config files to use config.root instead of older copy-pasted code. llvm-svn: 188513
* Add missing colons to check lines.Benjamin Kramer2013-04-111-1/+1
| | | | llvm-svn: 179277
* [tsan] make sure memset/memcpy/memmove are not inlined in tsan modeKostya Serebryany2013-03-281-0/+33
| | | | llvm-svn: 178230
* tsan: fix the testDmitry Vyukov2013-03-221-1/+1
| | | | | | Add missed file from r177717 commit that adds __tsan_vptr_read. llvm-svn: 177719
* tsan: handle vptr loads speciallyDmitry Vyukov2013-03-221-0/+13
| | | | | | | This is required to determine ctor/dtor vs virtual call races. http://llvm-reviews.chandlerc.com/D566 llvm-svn: 177717
* Unify clang/llvm attributes for asan/tsan/msan (LLVM part)Kostya Serebryany2013-02-261-2/+2
| | | | | | | | | | | | | | | | | | | These are two related changes (one in llvm, one in clang). LLVM: - rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode) - rename thread_safety => sanitize_thread - rename no_uninitialized_checks -> sanitize_memory CLANG: - add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis)) - add __attribute__((no_sanitize_thread)) - add __attribute__((no_sanitize_memory)) for S in address thread memory If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not set llvm attribute sanitize_S llvm-svn: 176075
* [tsan] disable load widening in ThreadSanitizer modeKostya Serebryany2013-02-131-0/+26
| | | | llvm-svn: 175034
* tsan: instrument atomic nand operationDmitry Vyukov2012-11-271-0/+200
| | | | llvm-svn: 168684
* [tsan] add fail order to compare_exchangeDmitry Vyukov2012-11-261-25/+25
| | | | llvm-svn: 168586
* tsan: switch to new memory_order constants (ABI compatible)Dmitry Vyukov2012-11-091-223/+223
| | | | llvm-svn: 167615
OpenPOWER on IntegriCloud