summaryrefslogtreecommitdiffstats
path: root/llvm/test/DebugInfo/X86/debug-loc-offset.ll
Commit message (Collapse)AuthorAgeFilesLines
* test/DebugInfo: Convert some tests to MIRMatthias Braun2018-11-021-171/+0
| | | | | | | | | | These tests are meant to test dwarf emission (or prolog/epilogue generation) so we can convert them to .mir and only run the relevant part of the pipeline. This way they become independent of changes in earlier passes such as my planned changes to RegAllocFast. llvm-svn: 345919
* [DebugInfo] Use absolute addresses in location listsJonas Devlieghere2018-05-211-2/+2
| | | | | | | | | | | Rather than relying on the user to do the address calculating in DW_AT_location we should just dump the absolute address. rdar://problem/38513870 Differential revision: https://reviews.llvm.org/D47152 llvm-svn: 332873
* [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.Shiva Chen2018-05-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to set breakpoints on labels and list source code around labels, we need collect debug information for labels, i.e., label name, the function label belong, line number in the file, and the address label located. In order to keep these information in LLVM IR and to allow backend to generate debug information correctly. We create a new kind of metadata for labels, DILabel. The format of DILabel is !DILabel(scope: !1, name: "foo", file: !2, line: 3) We hope to keep debug information as much as possible even the code is optimized. So, we create a new kind of intrinsic for label metadata to avoid the metadata is eliminated with basic block. The intrinsic will keep existing if we keep it from optimized out. The format of the intrinsic is llvm.dbg.label(metadata !1) It has only one argument, that is the DILabel metadata. The intrinsic will follow the label immediately. Backend could get the label metadata through the intrinsic's parameter. We also create DIBuilder API for labels to be used by Frontend. Frontend could use createLabel() to allocate DILabel objects, and use insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR. Differential Revision: https://reviews.llvm.org/D45024 Patch by Hsiangkai Wang. llvm-svn: 331841
* [DebugInfo] Unify dumping of address rangesJonas Devlieghere2018-01-161-8/+8
| | | | | | | | | | | | | | | Summary: This patch unifies the printing of address ranges as [0x0, 0x1). rdar://34822059 Reviewers: aprantl, dblaikie Subscribers: mehdi_amini, llvm-commits Differential Revision: https://reviews.llvm.org/D42056 llvm-svn: 322543
* llvm-dwarfdump: Make -brief the default and add a -verbose option instead.Adrian Prantl2017-09-111-1/+1
| | | | | | Differential Revision: https://reviews.llvm.org/D37717 llvm-svn: 312972
* [dwarfdump] Pretty print location expressions and location listsReid Kleckner2017-08-291-9/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: Based on Fred's patch here: https://reviews.llvm.org/D6771 I can't seem to commandeer the old review, so I'm creating a new one. With that change the locations exrpessions are pretty printed inline in the DIE tree. The output looks like this for debug_loc entries: DW_AT_location [DW_FORM_data4] (0x00000000 0x0000000000000001 - 0x000000000000000b: DW_OP_consts +3 0x000000000000000b - 0x0000000000000012: DW_OP_consts +7 0x0000000000000012 - 0x000000000000001b: DW_OP_reg0 RAX, DW_OP_piece 0x4 0x000000000000001b - 0x0000000000000024: DW_OP_breg5 RDI+0) And like this for debug_loc.dwo entries: DW_AT_location [DW_FORM_sec_offset] (0x00000000 Addr idx 2 (w/ length 190): DW_OP_consts +0, DW_OP_stack_value Addr idx 3 (w/ length 23): DW_OP_reg0 RAX, DW_OP_piece 0x4) Simple locations without ranges are printed inline: DW_AT_location [DW_FORM_block1] (DW_OP_reg4 RSI, DW_OP_piece 0x4, DW_OP_bit_piece 0x20 0x0) The debug_loc(.dwo) dumping in changed accordingly to factor the code. Reviewers: dblaikie, aprantl, friss Subscribers: mgorny, javed.absar, hiraditya, llvm-commits, JDevlieghere Differential Revision: https://reviews.llvm.org/D37123 llvm-svn: 312042
* DebugInfo: Do not emit empty CUsDavid Blaikie2017-05-261-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Consistent with GCC and addresses a shortcoming with ThinLTO where many imported CUs may end up being empty (because the functions imported from them either ended up not being used (and were then discarded, since they're imported as available_externally) or optimized away entirely). Test cases previously testing empty CUs (either intentionally, or because they didn't need anything more complicated) had a trivial 'int' or similar basic type added to their retained types list. This is a first order approximation - a deeper implementation could do things like: 1) Be more lazy about construction of the CU - for example if two CUs containing a single identical retained type are linked together, with this change one of the two CUs will be produced but empty (since a duplicate type won't be produced). 2) Go further and invert all the CU links the same way the subprogram link is inverted - keep named CU lists of retained types, macros, etc, and have those link back to the CU. Then if they're emitted, the CU is emitted, but never otherwise - this would allow the metadata itself to be dropped earlier too, though it seems unlikely that's an important optimization as there shouldn't be many CUs relative to the number of other entities. llvm-svn: 304020
* DebugInfo: Remove MDString-based type referencesDuncan P. N. Exon Smith2016-04-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around DIType*. It is no longer legal to refer to a DICompositeType by its 'identifier:', and DIBuilder no longer retains all types with an 'identifier:' automatically. Aside from the bitcode upgrade, this is mainly removing logic to resolve an MDString-based reference to an actualy DIType. The commits leading up to this have made the implicit type map in DICompileUnit's 'retainedTypes:' field superfluous. This does not remove DITypeRef, DIScopeRef, DINodeRef, and DITypeRefArray, or stop using them in DI-related metadata. Although as of this commit they aren't serving a useful purpose, there are patchces under review to reuse them for CodeView support. The tests in LLVM were updated with deref-typerefs.sh, which is attached to the thread "[RFC] Lazy-loading of debug info metadata": http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html llvm-svn: 267296
* [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.Adrian Prantl2016-04-151-6/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each Function points to a DISubprogram and DISubprogram has a scope field. For member functions the scope is a DICompositeType. DIScopes point to the DICompileUnit to facilitate type uniquing. Distinct DISubprograms (with isDefinition: true) are not part of the type hierarchy and cannot be uniqued. This change removes the subprograms list from DICompileUnit and instead adds a pointer to the owning compile unit to distinct DISubprograms. This would make it easy for ThinLTO to strip unneeded DISubprograms and their transitively referenced debug info. Motivation ---------- Materializing DISubprograms is currently the most expensive operation when doing a ThinLTO build of clang. We want the DISubprogram to be stored in a separate Bitcode block (or the same block as the function body) so we can avoid having to expensively deserialize all DISubprograms together with the global metadata. If a function has been inlined into another subprogram we need to store a reference the block containing the inlined subprogram. Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script that updates LLVM IR testcases to the new format. http://reviews.llvm.org/D19034 <rdar://problem/25256815> llvm-svn: 266446
* testcase gardening: update the emissionKind enum to the new syntax. (NFC)Adrian Prantl2016-04-011-2/+2
| | | | llvm-svn: 265081
* DI: Reverse direction of subprogram -> function edge.Peter Collingbourne2015-11-051-4/+4
| | | | | | | | | | | | | | | | | | | | | | | Previously, subprograms contained a metadata reference to the function they described. Because most clients need to get or set a subprogram for a given function rather than the other way around, this created unneeded inefficiency. For example, many passes needed to call the function llvm::makeSubprogramMap() to build a mapping from functions to subprograms, and the IR linker needed to fix up function references in a way that caused quadratic complexity in the IR linking phase of LTO. This change reverses the direction of the edge by storing the subprogram as function-level metadata and removing DISubprogram's function field. Since this is an IR change, a bitcode upgrade has been provided. Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is attached to the PR. Differential Revision: http://reviews.llvm.org/D14265 llvm-svn: 252219
* DI: Require subprogram definitions to be distinctDuncan P. N. Exon Smith2015-08-281-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | As a follow-up to r246098, require `DISubprogram` definitions (`isDefinition: true`) to be 'distinct'. Specifically, add an assembler check, a verifier check, and bitcode upgrading logic to combat testcase bitrot after the `DIBuilder` change. While working on the testcases, I realized that test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its purpose was to check for a corner case in PR22792 where two subprogram definitions match exactly and share the same metadata node. The new verifier check, requiring that subprogram definitions are 'distinct', precludes that possibility. I updated almost all the IR with the following script: git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' | grep -v test/Bitcode | xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/' Likely some variant of would work for out-of-tree testcases. llvm-svn: 246327
* DI: Disallow uniquable DICompileUnitsDuncan P. N. Exon Smith2015-08-031-2/+2
| | | | | | | | | | | | | | | | | | Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s. The backend is liable to start relying on that (if it hasn't already), so make uniquable `DICompileUnit`s illegal and automatically upgrade old bitcode. This is a nice cleanup, since we can remove an unnecessary `DenseSet` (and the associated uniquing info) from `LLVMContextImpl`. Almost all the testcases were updated with this script: git grep -e '= !DICompileUnit' -l -- test | grep -v test/Bitcode | xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,' I imagine something similar should work for out-of-tree testcases. llvm-svn: 243885
* DI: Remove DW_TAG_arg_variable and DW_TAG_auto_variableDuncan P. N. Exon Smith2015-07-311-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags, using `DW_TAG_variable` in their place Stop exposing the `tag:` field at all in the assembly format for `DILocalVariable`. Most of the testcase updates were generated by the following sed script: find test/ -name "*.ll" -o -name "*.mir" | xargs grep -l 'DILocalVariable' | xargs sed -i '' \ -e 's/tag: DW_TAG_arg_variable, //' \ -e 's/tag: DW_TAG_auto_variable, //' There were only a handful of tests in `test/Assembly` that I needed to update by hand. (Note: a follow-up could change `DILocalVariable::DILocalVariable()` to set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable` (as appropriate), instead of having that logic magically in the backend in `DbgVariable`. I've added a FIXME to that effect.) llvm-svn: 243774
* IR: Give 'DI' prefix to debug info metadataDuncan P. N. Exon Smith2015-04-291-29/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Finish off PR23080 by renaming the debug info IR constructs from `MD*` to `DI*`. The last of the `DIDescriptor` classes were deleted in r235356, and the last of the related typedefs removed in r235413, so this has all baked for about a week. Note: If you have out-of-tree code (like a frontend), I recommend that you get everything compiling and tests passing with the *previous* commit before updating to this one. It'll be easier to keep track of what code is using the `DIDescriptor` hierarchy and what you've already updated, and I think you're extremely unlikely to insert bugs. YMMV of course. Back to *this* commit: I did this using the rename-md-di-nodes.sh upgrade script I've attached to PR23080 (both code and testcases) and filtered through clang-format-diff.py. I edited the tests for test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns were off-by-three. It should work on your out-of-tree testcases (and code, if you've followed the advice in the previous paragraph). Some of the tests are in badly named files now (e.g., test/Assembler/invalid-mdcompositetype-missing-tag.ll should be 'dicompositetype'); I'll come back and move the files in a follow-up commit. llvm-svn: 236120
* Use the i8 immediate cmp instructions when possible.Rafael Espindola2015-03-161-1/+1
| | | | llvm-svn: 232378
* Emit correct linkage-name attribute based on DWARF version.Paul Robinson2015-03-101-1/+1
| | | | | | | | | | There are still 4 tests that check for DW_AT_MIPS_linkage_name, because they specify DWARF 2 or 3 in the module metadata. So, I didn't create an explicit version-based test for the attribute. Differential Revision: http://reviews.llvm.org/D8227 llvm-svn: 231880
* DebugInfo: Move new hierarchy into placeDuncan P. N. Exon Smith2015-03-031-21/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the specialized metadata nodes for the new debug info hierarchy into place, finishing off PR22464. I've done bootstraps (and all that) and I'm confident this commit is NFC as far as DWARF output is concerned. Let me know if I'm wrong :). The code changes are fairly mechanical: - Bumped the "Debug Info Version". - `DIBuilder` now creates the appropriate subclass of `MDNode`. - Subclasses of DIDescriptor now expect to hold their "MD" counterparts (e.g., `DIBasicType` expects `MDBasicType`). - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp` for printing comments. - Big update to LangRef to describe the nodes in the new hierarchy. Feel free to make it better. Testcase changes are enormous. There's an accompanying clang commit on its way. If you have out-of-tree debug info testcases, I just broke your build. - `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to update all the IR testcases. - Unfortunately I failed to find way to script the updates to CHECK lines, so I updated all of these by hand. This was fairly painful, since the old CHECKs are difficult to reason about. That's one of the benefits of the new hierarchy. This work isn't quite finished, BTW. The `DIDescriptor` subclasses are almost empty wrappers, but not quite: they still have loose casting checks (see the `RETURN_FROM_RAW()` macro). Once they're completely gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I also expect to make a few schema changes now that it's easier to reason about everything. llvm-svn: 231082
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Remove support for DIVariable's FlagIndirectVariable and expectAdrian Prantl2015-01-191-2/+2
| | | | | | | | | | | | | | | frontends to use a DIExpression with a DW_OP_deref instead. This is not only a much more natural place for this informationl; there is also a technical reason: The FlagIndirectVariable is used to mark a variable that is turned into a reference by virtue of the calling convention; this happens for example to aggregate return values. The inliner, for example, may actually need to undo this indirection to correctly represent the value in its new context. This is impossible to implement because the DIVariable can't be safely modified. We can however safely construct a new DIExpression on the fly. llvm-svn: 226476
* IR: Move MDLocation into placeDuncan P. N. Exon Smith2015-01-141-9/+9
| | | | | | | | | | | | | | | | | | | | This commit moves `MDLocation`, finishing off PR21433. There's an accompanying clang commit for frontend testcases. I'll attach the testcase upgrade script I used to PR21433 to help out-of-tree frontends/backends. This changes the schema for `DebugLoc` and `DILocation` from: !{i32 3, i32 7, !7, !8} to: !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8) Note that empty fields (line/column: 0 and inlinedAt: null) don't get printed by the assembly writer. llvm-svn: 226048
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-151-38/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* Revert "Revert "DI: Fold constant arguments into a single MDString""Duncan P. N. Exon Smith2014-10-031-20/+20
| | | | | | | | | | | | | | | | | | | | | | This reverts commit r218918, effectively reapplying r218914 after fixing an Ocaml bindings test and an Asan crash. The root cause of the latter was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a PR to investigate who requires the loose check (and why). Original commit message follows. -- This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 219010
* Revert "DI: Fold constant arguments into a single MDString"Duncan P. N. Exon Smith2014-10-021-20/+20
| | | | | | This reverts commit r218914 while I investigate some bots. llvm-svn: 218918
* DI: Fold constant arguments into a single MDStringDuncan P. N. Exon Smith2014-10-021-20/+20
| | | | | | | | | | | | | This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 218914
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
* Revert r218778 while investigating buldbot breakage.Adrian Prantl2014-10-011-4/+4
| | | | | | "Move the complex address expression out of DIVariable and into an extra" llvm-svn: 218782
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
* DebugInfo: Following up to r209677, refactor local variable emission to ↵David Blaikie2014-06-131-1/+3
| | | | | | | | | | | | | | | | delay the choice between emitting the definition attributes or using DW_AT_abstract_definition This doesn't fix the abstract variable handling yet, but it introduces a similar delay mechanism as was added for subprograms, causing DW_AT_location to be reordered to the beginning of the attribute list for local variables, and fixes all the test fallout for that. A subsequent commit will remove the abstract variable handling in DbgVariable and just do the abstract variable lookup at module end to ensure that abstract variables introduced after their concrete counterparts are appropriately referenced by the concrete variable. llvm-svn: 210943
* Generate better location ranges for some register-described variables.Alexey Samsonov2014-06-091-48/+84
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Don't terminate location ranges for register-described variables at the end of machine basic block if this register is never modified in the function body, except for the prologue and epilogue. Prologue location is guessed by FrameSetup flags on MachineInstructions, while epilogue location is deduced from debug locations of instructions in the basic blocks ending with return instructions. This patch is mostly targeted to fix non-trivial debug locations for variables addressed via stack and frame pointers. It is not really a generic fix. We can still produce poor debug info for register-described variables if this register *is* modified somewhere in the function, but in unrelated places. This might be the case for the debug info in optimized binaries (e.g. for local variables in inlined functions). LiveDebugVariables pass in CodeGen attempts to fix this problem by adjusting DBG_VALUE instructions, but this pass is tied to greedy register allocator, which is used in optimized builds only. Proper fix would likely involve generalizing LiveDebugVariables to all register allocators. See more discussion in http://reviews.llvm.org/D3933 review thread. I'm proceeding with this patch to fix immediate severe problems and important cases, e.g. fix completely broken debug info with AddressSanitizer and fix PR19307 (missing debug info for by-value std::string arguments). llvm-svn: 210492
* DebugInfo: Generalize some tests to handle variations in attribute ordering.David Blaikie2014-05-231-1/+3
| | | | | | | | | | | | | | | | In an effort to fix inlined debug info in situations where the out of line definition of a function preceeds any inlined usage, the order in which some attributes are added to subprogram DIEs may change. (in essence, definition-necessary attributes like DW_AT_low_pc/high_pc will be added immediately, but the names, types, and other features will be delayed to module end where they may either be added to the subprogram DIE or instead reference an abstract definition for those values) These tests can be generalized to be resilient to this change. 5 or so tests actually have to be incompatibly changed to cope with this reordering and will go along with the change that affects the order. llvm-svn: 209554
* Reapply DW_AT_low/high_pc patch:Eric Christopher2014-03-201-0/+113
Use the range machinery for DW_AT_ranges and DW_AT_high/lo_pc. This commit moves us from a single range per subprogram to extending ranges if we are: a) In the same section, and b) In the same enclosing CU. This means we have more fine grained ranges for compile units, and fewer ranges overall when we have multiple functions in the same CU adjacent to each other in the object file. Also remove all of the earlier hacks around this functionality for function sections etc. Also update all of the testcases to take into account the merging functionality. with a fix for location entries in the debug_loc section: Make sure that debug loc entries are relative to the low_pc of the compile unit. This means that when we only have a single range that the offset should be just relative to the low_pc of the unit, for multiple ranges for a CU this means that we'll be relative to 0 which we emit along with DW_AT_ranges. This mostly shows up with linked binaries, so add a testcase with multiple CUs so that our location is going to be offset of a CU with a non-zero low_pc. llvm-svn: 204377
OpenPOWER on IntegriCloud