summaryrefslogtreecommitdiffstats
path: root/llvm/test/DebugInfo/X86/array2.ll
Commit message (Collapse)AuthorAgeFilesLines
* [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.Shiva Chen2018-05-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to set breakpoints on labels and list source code around labels, we need collect debug information for labels, i.e., label name, the function label belong, line number in the file, and the address label located. In order to keep these information in LLVM IR and to allow backend to generate debug information correctly. We create a new kind of metadata for labels, DILabel. The format of DILabel is !DILabel(scope: !1, name: "foo", file: !2, line: 3) We hope to keep debug information as much as possible even the code is optimized. So, we create a new kind of intrinsic for label metadata to avoid the metadata is eliminated with basic block. The intrinsic will keep existing if we keep it from optimized out. The format of the intrinsic is llvm.dbg.label(metadata !1) It has only one argument, that is the DILabel metadata. The intrinsic will follow the label immediately. Backend could get the label metadata through the intrinsic's parameter. We also create DIBuilder API for labels to be used by Frontend. Frontend could use createLabel() to allocate DILabel objects, and use insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR. Differential Revision: https://reviews.llvm.org/D45024 Patch by Hsiangkai Wang. llvm-svn: 331841
* Remove alignment argument from memcpy/memmove/memset in favour of alignment ↵Daniel Neilson2018-01-191-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
* Parse and print DIExpressions inline to ease IR and MIR testingReid Kleckner2017-08-231-2/+1
| | | | | | | | | | | | | | | | | | | Summary: Most DIExpressions are empty or very simple. When they are complex, they tend to be unique, so checking them inline is reasonable. This also avoids the need for CodeGen passes to append to the llvm.dbg.mir named md node. See also PR22780, for making DIExpression not be an MDNode. Reviewers: aprantl, dexonsmith, dblaikie Subscribers: qcolombet, javed.absar, eraman, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D37075 llvm-svn: 311594
* Remove the obsolete offset parameter from @llvm.dbg.valueAdrian Prantl2017-07-281-1/+1
| | | | | | | | | | | | There is no situation where this rarely-used argument cannot be substituted with a DIExpression and removing it allows us to simplify the DWARF backend. Note that this patch does not yet remove any of the newly dead code. rdar://problem/33580047 Differential Revision: https://reviews.llvm.org/D35951 llvm-svn: 309426
* [DIExpression] Introduce a dedicated DW_OP_LLVM_fragment operationAdrian Prantl2016-12-051-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | so we can stop using DW_OP_bit_piece with the wrong semantics. The entire back story can be found here: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's offset field to mean the offset into the source variable rather than the offset into the location at the top the DWARF expression stack. In order to be able to fix this in a subsequent patch, this patch introduces a dedicated DW_OP_LLVM_fragment operation with the semantics that we used to apply to DW_OP_bit_piece, which is what we actually need while inside of LLVM. This patch is complete with a bitcode upgrade for expressions using the old format. It does not yet fix the DWARF backend to use DW_OP_bit_piece correctly. Implementation note: We discussed several options for implementing this, including reserving a dedicated field in DIExpression for the fragment size and offset, but using an custom operator at the end of the expression works just fine and is more efficient because we then only pay for it when we need it. Differential Revision: https://reviews.llvm.org/D27361 rdar://problem/29335809 llvm-svn: 288683
* [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.Adrian Prantl2016-04-151-4/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each Function points to a DISubprogram and DISubprogram has a scope field. For member functions the scope is a DICompositeType. DIScopes point to the DICompileUnit to facilitate type uniquing. Distinct DISubprograms (with isDefinition: true) are not part of the type hierarchy and cannot be uniqued. This change removes the subprograms list from DICompileUnit and instead adds a pointer to the owning compile unit to distinct DISubprograms. This would make it easy for ThinLTO to strip unneeded DISubprograms and their transitively referenced debug info. Motivation ---------- Materializing DISubprograms is currently the most expensive operation when doing a ThinLTO build of clang. We want the DISubprogram to be stored in a separate Bitcode block (or the same block as the function body) so we can avoid having to expensively deserialize all DISubprograms together with the global metadata. If a function has been inlined into another subprogram we need to store a reference the block containing the inlined subprogram. Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script that updates LLVM IR testcases to the new format. http://reviews.llvm.org/D19034 <rdar://problem/25256815> llvm-svn: 266446
* testcase gardening: update the emissionKind enum to the new syntax. (NFC)Adrian Prantl2016-04-011-1/+1
| | | | llvm-svn: 265081
* Revert "Change memcpy/memset/memmove to have dest and source alignments."Pete Cooper2015-11-191-2/+2
| | | | | | | | | | This reverts commit r253511. This likely broke the bots in http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202 http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787 llvm-svn: 253543
* Change memcpy/memset/memmove to have dest and source alignments.Pete Cooper2015-11-181-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html These intrinsics currently have an explicit alignment argument which is required to be a constant integer. It represents the alignment of the source and dest, and so must be the minimum of those. This change allows source and dest to each have their own alignments by using the alignment attribute on their arguments. The alignment argument itself is removed. There are a few places in the code for which the code needs to be checked by an expert as to whether using only src/dest alignment is safe. For those places, they currently take the minimum of src/dest alignments which matches the current behaviour. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false) will now read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false) For out of tree owners, I was able to strip alignment from calls using sed by replacing: (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\) with: $1i1 false) and similarly for memmove and memcpy. I then added back in alignment to test cases which needed it. A similar commit will be made to clang which actually has many differences in alignment as now IRBuilder can generate different source/dest alignments on calls. In IRBuilder itself, a new argument was added. Instead of calling: CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false) you now call CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false) There is a temporary class (IntegerAlignment) which takes the source alignment and rejects implicit conversion from bool. This is to prevent isVolatile here from passing its default parameter to the source alignment. Note, changes in future can now be made to codegen. I didn't change anything here, but this change should enable better memcpy code sequences. Reviewed by Hal Finkel. llvm-svn: 253511
* DI: Reverse direction of subprogram -> function edge.Peter Collingbourne2015-11-051-4/+4
| | | | | | | | | | | | | | | | | | | | | | | Previously, subprograms contained a metadata reference to the function they described. Because most clients need to get or set a subprogram for a given function rather than the other way around, this created unneeded inefficiency. For example, many passes needed to call the function llvm::makeSubprogramMap() to build a mapping from functions to subprograms, and the IR linker needed to fix up function references in a way that caused quadratic complexity in the IR linking phase of LTO. This change reverses the direction of the edge by storing the subprogram as function-level metadata and removing DISubprogram's function field. Since this is an IR change, a bitcode upgrade has been provided. Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is attached to the PR. Differential Revision: http://reviews.llvm.org/D14265 llvm-svn: 252219
* DI: Require subprogram definitions to be distinctDuncan P. N. Exon Smith2015-08-281-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | As a follow-up to r246098, require `DISubprogram` definitions (`isDefinition: true`) to be 'distinct'. Specifically, add an assembler check, a verifier check, and bitcode upgrading logic to combat testcase bitrot after the `DIBuilder` change. While working on the testcases, I realized that test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its purpose was to check for a corner case in PR22792 where two subprogram definitions match exactly and share the same metadata node. The new verifier check, requiring that subprogram definitions are 'distinct', precludes that possibility. I updated almost all the IR with the following script: git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' | grep -v test/Bitcode | xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/' Likely some variant of would work for out-of-tree testcases. llvm-svn: 246327
* DI: Disallow uniquable DICompileUnitsDuncan P. N. Exon Smith2015-08-031-1/+1
| | | | | | | | | | | | | | | | | | Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s. The backend is liable to start relying on that (if it hasn't already), so make uniquable `DICompileUnit`s illegal and automatically upgrade old bitcode. This is a nice cleanup, since we can remove an unnecessary `DenseSet` (and the associated uniquing info) from `LLVMContextImpl`. Almost all the testcases were updated with this script: git grep -e '= !DICompileUnit' -l -- test | grep -v test/Bitcode | xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,' I imagine something similar should work for out-of-tree testcases. llvm-svn: 243885
* DI: Remove DW_TAG_arg_variable and DW_TAG_auto_variableDuncan P. N. Exon Smith2015-07-311-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags, using `DW_TAG_variable` in their place Stop exposing the `tag:` field at all in the assembly format for `DILocalVariable`. Most of the testcase updates were generated by the following sed script: find test/ -name "*.ll" -o -name "*.mir" | xargs grep -l 'DILocalVariable' | xargs sed -i '' \ -e 's/tag: DW_TAG_arg_variable, //' \ -e 's/tag: DW_TAG_auto_variable, //' There were only a handful of tests in `test/Assembly` that I needed to update by hand. (Note: a follow-up could change `DILocalVariable::DILocalVariable()` to set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable` (as appropriate), instead of having that logic magically in the backend in `DbgVariable`. I've added a FIXME to that effect.) llvm-svn: 243774
* IR: Give 'DI' prefix to debug info metadataDuncan P. N. Exon Smith2015-04-291-31/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Finish off PR23080 by renaming the debug info IR constructs from `MD*` to `DI*`. The last of the `DIDescriptor` classes were deleted in r235356, and the last of the related typedefs removed in r235413, so this has all baked for about a week. Note: If you have out-of-tree code (like a frontend), I recommend that you get everything compiling and tests passing with the *previous* commit before updating to this one. It'll be easier to keep track of what code is using the `DIDescriptor` hierarchy and what you've already updated, and I think you're extremely unlikely to insert bugs. YMMV of course. Back to *this* commit: I did this using the rename-md-di-nodes.sh upgrade script I've attached to PR23080 (both code and testcases) and filtered through clang-format-diff.py. I edited the tests for test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns were off-by-three. It should work on your out-of-tree testcases (and code, if you've followed the advice in the previous paragraph). Some of the tests are in badly named files now (e.g., test/Assembler/invalid-mdcompositetype-missing-tag.ll should be 'dicompositetype'); I'll come back and move the files in a follow-up commit. llvm-svn: 236120
* DebugInfo: Move new hierarchy into placeDuncan P. N. Exon Smith2015-03-031-25/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the specialized metadata nodes for the new debug info hierarchy into place, finishing off PR22464. I've done bootstraps (and all that) and I'm confident this commit is NFC as far as DWARF output is concerned. Let me know if I'm wrong :). The code changes are fairly mechanical: - Bumped the "Debug Info Version". - `DIBuilder` now creates the appropriate subclass of `MDNode`. - Subclasses of DIDescriptor now expect to hold their "MD" counterparts (e.g., `DIBasicType` expects `MDBasicType`). - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp` for printing comments. - Big update to LangRef to describe the nodes in the new hierarchy. Feel free to make it better. Testcase changes are enormous. There's an accompanying clang commit on its way. If you have out-of-tree debug info testcases, I just broke your build. - `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to update all the IR testcases. - Unfortunately I failed to find way to script the updates to CHECK lines, so I updated all of these by hand. This was fairly painful, since the old CHECKs are difficult to reason about. That's one of the benefits of the new hierarchy. This work isn't quite finished, BTW. The `DIDescriptor` subclasses are almost empty wrappers, but not quite: they still have loose casting checks (see the `RETURN_FROM_RAW()` macro). Once they're completely gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I also expect to make a few schema changes now that it's easier to reason about everything. llvm-svn: 231082
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Debug info: Use DW_OP_bit_piece instead of DW_OP_piece in theAdrian Prantl2015-02-091-1/+1
| | | | | | | | | | | intermediate representation. This - increases consistency by using the same granularity everywhere - allows for pieces < 1 byte - DW_OP_piece didn't actually allow storing an offset. Part of PR22495. llvm-svn: 228631
* Reapply: Teach SROA how to update debug info for fragmented variables.Adrian Prantl2015-01-201-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reapplies r225379. ChangeLog: - The assertion that this commit previously ran into about the inability to handle indirect variables has since been removed and the backend can handle this now. - Testcases were upgrade to the new MDLocation format. - Instead of keeping a DebugDeclares map, we now use llvm::FindAllocaDbgDeclare(). Original commit message follows. Debug info: Teach SROA how to update debug info for fragmented variables. This allows us to generate debug info for extremely advanced code such as typedef struct { long int a; int b;} S; int foo(S s) { return s.b; } which at -O1 on x86_64 is codegen'd into define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 { ret i32 %s.coerce1, !dbg !24 } with this patch we emit the following debug info for this TAG_formal_parameter [3] AT_location( 0x00000000 0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004 0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 ) AT_name( "s" ) AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" ) Thanks to chandlerc, dblaikie, and echristo for their feedback on all previous iterations of this patch! llvm-svn: 226598
* IR: Move MDLocation into placeDuncan P. N. Exon Smith2015-01-141-7/+7
| | | | | | | | | | | | | | | | | | | | This commit moves `MDLocation`, finishing off PR21433. There's an accompanying clang commit for frontend testcases. I'll attach the testcase upgrade script I used to PR21433 to help out-of-tree frontends/backends. This changes the schema for `DebugLoc` and `DILocation` from: !{i32 3, i32 7, !7, !8} to: !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8) Note that empty fields (line/column: 0 and inlinedAt: null) don't get printed by the assembly writer. llvm-svn: 226048
* Revert "Reapply: Teach SROA how to update debug info for fragmented variables."Adrian Prantl2015-01-081-4/+4
| | | | | | | This reverts commit r225379 while investigating an assertion failure reported by Alexey. llvm-svn: 225424
* Reapply: Teach SROA how to update debug info for fragmented variables.Adrian Prantl2015-01-071-4/+4
| | | | | | | | The two buildbot failures were addressed in LLVM r225378 and CFE r225359. This rapplies commit 225272 without modifications. llvm-svn: 225379
* Revert "Reapply: Teach SROA how to update debug info for fragmented variables."Adrian Prantl2015-01-061-4/+4
| | | | | | | | | because of a tsan buildbot failure. This reverts commit 225272. Fix should be coming soon. llvm-svn: 225288
* Reapply: Teach SROA how to update debug info for fragmented variables.Adrian Prantl2015-01-061-4/+4
| | | | | | | | | | This also rolls in the changes discussed in http://reviews.llvm.org/D6766. Defers migrating the debug info for new allocas until after all partitions are created. Thanks to Chandler for reviewing! llvm-svn: 225272
* Revert r224739: Debug info: Teach SROA how to update debug info forChandler Carruth2014-12-231-4/+4
| | | | | | | | | | | fragmented variables. This caused codegen to start crashing when we built somewhat large programs with debug info and optimizations. 'check-msan' hit in, and I suspect a bootstrap would as well. I mailed a test case to the review thread. llvm-svn: 224750
* Debug info: Teach SROA how to update debug info for fragmented variables.Adrian Prantl2014-12-221-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This allows us to generate debug info for extremely advanced code such as typedef struct { long int a; int b;} S; int foo(S s) { return s.b; } which at -O1 on x86_64 is codegen'd into define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 { ret i32 %s.coerce1, !dbg !24 } with this patch we emit the following debug info for this TAG_formal_parameter [3] AT_location( 0x00000000 0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004 0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 ) AT_name( "s" ) AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" ) Thanks to chandlerc, dblaikie, and echristo for their feedback on all previous iterations of this patch! llvm-svn: 224739
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-151-37/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* Revert "Revert "DI: Fold constant arguments into a single MDString""Duncan P. N. Exon Smith2014-10-031-23/+23
| | | | | | | | | | | | | | | | | | | | | | This reverts commit r218918, effectively reapplying r218914 after fixing an Ocaml bindings test and an Asan crash. The root cause of the latter was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a PR to investigate who requires the loose check (and why). Original commit message follows. -- This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 219010
* Revert "DI: Fold constant arguments into a single MDString"Duncan P. N. Exon Smith2014-10-021-23/+23
| | | | | | This reverts commit r218914 while I investigate some bots. llvm-svn: 218918
* DI: Fold constant arguments into a single MDStringDuncan P. N. Exon Smith2014-10-021-23/+23
| | | | | | | | | | | | | This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 218914
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
* Revert r218778 while investigating buldbot breakage.Adrian Prantl2014-10-011-5/+5
| | | | | | "Move the complex address expression out of DIVariable and into an extra" llvm-svn: 218782
* Move the complex address expression out of DIVariable and into an extraAdrian Prantl2014-10-011-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
* Unbreak the gdb buildbot by not lowering dbg.declare intrinsics for arrays.Adrian Prantl2014-04-251-0/+107
llvm-svn: 207284
OpenPOWER on IntegriCloud