| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
Revert because of reports of some PPC input starting to spill when it
was predicted that it wouldn't and no spillslot was reserved.
This reverts commit r305516.
llvm-svn: 305566
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If users tried to have a structure decl/init code like below
struct test_t t = { .memeber1 = 45 };
It is very likely that compiler will generate a readonly section
to hold up the init values for variable t. Later load of t members,
e.g., t.member1 will result in a read from readonly section.
BPF program cannot handle relocation. This will force users to
write:
struct test_t t = {};
t.member1 = 45;
This is just inconvenient and unintuitive.
This patch addresses this issue by implementing BPF PreprocessISelDAG.
For any load from a global constant structure or an global array of
constant struct, it attempts to
translate it into a constant directly. The traversal of the
constant struct and other constant data structures are similar
to where the assembler emits read-only sections.
Four different unit test cases are also added to cover
different scenarios.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305560
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html
This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.
Reviewers: reames, sanjoy, efriedma
Reviewed By: reames
Subscribers: mzolotukhin, anna, llvm-commits, skatkov
Differential Revision: https://reviews.llvm.org/D33240
llvm-svn: 305558
|
|
|
|
|
|
|
|
|
| |
ADDIUR1SP"
This reverts commit r305455. This commit was reported as breaking one of
the sanitizer buildbots. Reverting until lab.llvm.org comes back online.
llvm-svn: 305557
|
|
|
|
|
|
|
|
|
| |
The second part of r305300: when placing the mux at the later location,
make sure that it won't use any register that was killed between the
two original instructions. Remove any such kills and transfer them to
the mux.
llvm-svn: 305553
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-apply r276044/r279124. Trying to reproduce or disprove the ppc64
problems reported in the stage2 build last time, which I cannot
reproduce right now.
This is a variant of scavengeRegister() that works for
enterBasicBlockEnd()/backward(). The benefit of the backward mode is
that it is not affected by incomplete kill flags.
This patch also changes
PrologEpilogInserter::doScavengeFrameVirtualRegs() to use the register
scavenger in backwards mode.
Differential Revision: http://reviews.llvm.org/D21885
llvm-svn: 305516
|
|
|
|
| |
llvm-svn: 305494
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add condition for MachineLICM to safely hoist instructions that utilize
non constant registers that are reserved.
On PPC, global variable access is done through the table of contents (TOC)
which is always in register X2. The ABI reserves this register in any
functions that have calls or access global variables.
A call through a function pointer involves saving, changing and restoring
this register around the call and thus MachineLICM does not consider it to
be invariant. We can however guarantee the register is preserved across the
call and thus is invariant.
Differential Revision: https://reviews.llvm.org/D33562
llvm-svn: 305490
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code assumed that we process instructions in basic block order. FastISel
processes instructions in reverse basic block order. We need to pre-assign
virtual registers before selecting otherwise we get def-use relationships wrong.
This only affects code with swifterror registers.
rdar://32659327
llvm-svn: 305484
|
|
|
|
|
|
|
|
| |
This patch fixes a potential verification error (64-bit register operands for cmpw) with -verify-machineinstrs.
Differential Revision: https://reviews.llvm.org/D34208
llvm-svn: 305479
|
|
|
|
|
|
|
|
|
|
| |
assuming v8i16 vectors
We can use this with v16i16/v32i16 as well.
Found during fuzz testing.
llvm-svn: 305472
|
|
|
|
|
|
|
|
| |
(remove redundant shift left+right instructions).
This is causing windows buildbot failures
llvm-svn: 305470
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
redundant shift left+right instructions).
AVX512 compare instructions return v*i1 types.
In cases where the number of elements in the returned value are less than 8, clang adds zeroes to get a mask of v8i1 type.
Later on it's replaced with CONCAT_VECTORS, which then is lowered to many DAG nodes including insert/extract element and shift right/left nodes.
The fact that AVX512 compare instructions put the result in a k register and zeroes all its upper bits allows us to remove the extra nodes simply by copying the result to the required register class.
When lowering, identify these cases and transform them into an INSERT_SUBVECTOR node (marked legal), then catch this pattern in instructions selection phase and transform it into one avx512 cmp instruction.
Differential Revision: https://reviews.llvm.org/D33188
llvm-svn: 305465
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for modulo for targets that have hardware division and for
those that don't. When hardware division is not available, we have to
choose the correct libcall to use. This is generally straightforward,
except for AEABI.
The AEABI variant is trickier than the other libcalls because it
returns { quotient, remainder }, instead of just one value like the
other libcalls that we've seen so far. Therefore, we need to use custom
lowering for it. However, we don't want to have too much special code,
so we refactor the target-independent code in the legalizer by adding a
helper for replacing an instruction with a libcall. This helper is used
by the legalizer itself when dealing with simple calls, and also by the
custom ARM legalization for the more complicated AEABI divmod calls.
llvm-svn: 305459
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Lowering mixed struct args, params and returns used G_INSERT, which is a
bit more convoluted to support through the entire pipeline. Since they
don't occur that often in practice, it's probably wiser to leave them
out until later.
Meanwhile, we can lower homogeneous structs using G_MERGE_VALUES, which
has good support in the legalizer. These occur e.g. as the return of
__aeabi_idivmod, so it's nice to be able to support them.
llvm-svn: 305458
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Scheduling AESE/AESMC and AESD/AESIMC instruction pairs back-to-back
gives a double digit speedup on benchmarks using those instructions on
Cortex-A processors. In GCC, this optimization is part of the generic
processor model as well.
This change should not have a major performance impact on processors
that do not optimize AES instruction pairs, although I only had access
to Cortex-A processors for benchmarking.
Reviewers: rengolin, kristof.beyls, javed.absar, evandro, silviu.baranga, MatzeB, mcrosier, joelkevinjones, joel_k_jones, bmakam, t.p.northover
Reviewed By: evandro
Subscribers: sbaranga, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D33836
llvm-svn: 305457
|
|
|
|
|
|
|
|
|
|
|
|
| |
Author: milena.vujosevic.janicic
Reviewers: sdardis
The patch extends size reduction pass for MicroMIPS.
The following instructions are examined and transformed, if possible:
ADDIU instruction is transformed into 16-bit instruction ADDIUSP
ADDIU instruction is transformed into 16-bit instruction ADDIUR1SP
Differential Revision: https://reviews.llvm.org/D33887
llvm-svn: 305455
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 3a204faa093c681a1e96c5e0622f50649b761ee0.
I've upset a buildbot which runs the address sanitizer:
ERROR: AddressSanitizer: stack-use-after-scope
lib/Target/ARM/ARMISelLowering.cpp:2690
That Twine variable is used illegally.
llvm-svn: 305390
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For multiprecision arithmetic on MIPS, rather than using ISD::ADDE / ISD::ADDC,
get SelectionDAG to break down the operation into ISD::ADDs and ISD::SETCCs.
For MIPS, only the DSP ASE has a carry flag, so in the general case it is not
useful to directly support ISD::{ADDE, ADDC, SUBE, SUBC} nodes.
Also improve the generation code in such cases for targets with
TargetLoweringBase::ZeroOrOneBooleanContent by directly using the result of the
comparison node rather than using it in selects. Similarly for ISD::SUBE /
ISD::SUBC.
Address optimization breakage by moving the generation of MIPS specific integer
multiply-accumulate nodes to before legalization.
This revolves PR32713 and PR33424.
Thanks to Simonas Kazlauskas and Pirama Arumuga Nainar for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D33494
llvm-svn: 305389
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ARM backend asserts against constant pool lowering when it generates
execute-only code in order to prevent the generation of constant pools in
the text section. It appears that target independent optimizations might
generate DAG nodes that represent constant pools. By lowering such nodes
as global addresses we don't violate the semantics of execute-only code
and also it is guaranteed that execute-only behaves correct with the
position-independent addressing modes that support execute-only code.
Differential Revision: https://reviews.llvm.org/D33773
llvm-svn: 305387
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes two systemic machine verifier errors in the long
branch pass. The first is the incorrect basic block successors
and the second was the incorrect construction of several jump
instructions.
This partially resolves PR27458 and the associated PR32146.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D33378
llvm-svn: 305382
|
|
|
|
|
|
| |
Reverting this until a test case can be provided to aid the investigation.
llvm-svn: 305372
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When legalizing G_LOAD/G_STORE using NarrowScalar, we should avoid emitting
%0 = G_CONSTANT ty 0
%1 = G_GEP %x, %0
since it's cheaper to not emit the redundant instructions than it is to fold them
away later.
Reviewers: qcolombet, t.p.northover, ab, rovka, aditya_nandakumar, kristof.beyls
Reviewed By: qcolombet
Subscribers: javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D32746
llvm-svn: 305340
|
|
|
|
|
|
|
|
|
| |
Store-immediate instructions have a non-extendable offset. Since the
actual offset for a stack object is not known until much later, only
generate these stores when the stack size (at the time of instruction
selection) is small.
llvm-svn: 305305
|
|
|
|
| |
llvm-svn: 305302
|
|
|
|
|
|
|
|
|
|
|
| |
When a mux instruction is created from a pair of complementary conditional
transfers, it can be placed at the location of either the earlier or the
later of the transfers. Since it will use the operands of the original
transfers, putting it in the earlier location may hoist a kill of a source
register that was originally further down. Make sure the kill flag is
removed if the register is still used afterwards.
llvm-svn: 305300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While simplifying branches in the MachineInstr representation, the
routine BuildCondBr must preserve flags on register MachineOperands. In
particular, it must preserve the <undef> flag.
This fixes a bug that is unlikely to occur in any real scenario, but
which bugpoint is likely to introduce.
Patch By Nick Johnson!
Reviewers: ahatanak, sdardis
Differential Revision: https://reviews.llvm.org/D34041
llvm-svn: 305290
|
|
|
|
|
|
|
| |
The conversion of shifts from right shifts to left shifts may fail.
In such case, the pmpy recognition cannot proceed.
llvm-svn: 305289
|
|
|
|
|
|
|
|
|
|
| |
The VFNM[AS] instructions did not have scheduling information attached, which
was causing assertion failures with the Cortex-A57 scheduling model and
-fp-contract=fast, because the Cortex-A57 sched model claims to be complete.
Differential Revision: https://reviews.llvm.org/D34139
llvm-svn: 305288
|
|
|
|
| |
llvm-svn: 305276
|
|
|
|
| |
llvm-svn: 305275
|
|
|
|
| |
llvm-svn: 305274
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, rovka, kristof.beyls, igorb, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D33992
llvm-svn: 305232
|
|
|
|
|
|
|
|
|
|
| |
The "Add/sub (shifted reg)" instructions use the 31 encoding for xzr and wzr
rather than the SP, so we need to use different variants.
Situations where this actually comes up are rare enough (see test-case) that I
think falling back to DAG is fine.
llvm-svn: 305230
|
|
|
|
|
|
|
|
|
|
|
|
| |
Power9 has instructions that will reverse the bytes within an element for all
sizes (half-word, word, double-word and quad-word). These can be used for the
vec_revb builtins in altivec.h. However, we implement these to match vector
shuffle nodes as that will cover both the builtins and vector shuffles that
occur in the SDAG through other means.
Differential Revision: https://reviews.llvm.org/D33690
llvm-svn: 305214
|
|
|
|
|
|
|
|
|
|
|
| |
Note that if we need the result of both the divide and the modulo then we
compute the modulo based on the result of the divide and not using the new
hardware instruction.
Commit on behalf of STEFAN PINTILIE.
Differential Revision: https://reviews.llvm.org/D33940
llvm-svn: 305210
|
|
|
|
|
|
|
|
|
|
|
| |
The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing is just causing confusion.
We can rip out the llc ability in update_test_checks.py next and rename it, so it will
be clear that we have one script for llc check auto-generation and another for opt.
llvm-svn: 305206
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-fno-math-errno
Summary:
This change enables the sin(x) cos(x) -> sincos(x) optimization on GNU
target triples. This optimization was being inhibited when -ffast-math
wasn't set because sincos in GLibC does not set errno, while sin and cos
do. However, this optimization will only run if the attributes on the
sin/cos calls include readnone, which is how clang represents the fact
that it doesn't care about the errno values set by these functions (via
the -fno-math-errno flag).
Reviewers: hfinkel, bogner
Subscribers: mcrosier, javed.absar, llvm-commits, paul.redmond
Differential Revision: https://reviews.llvm.org/D32921
llvm-svn: 305204
|
|
|
|
|
|
|
| |
Also fix reporting r+r as a valid addressing mode without
offsets.
llvm-svn: 305203
|
|
|
|
|
|
|
|
|
|
| |
The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing is just causing confusion for newcomers. I plan to fix up more
x86 tests in a next commit. We can rip out the llc ability in update_test_checks.py after
that.
llvm-svn: 305202
|
|
|
|
| |
llvm-svn: 305201
|
|
|
|
| |
llvm-svn: 305194
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The old check for slot overlap treated 2 slots `S` and `T` as
overlapping if there existed a CFG node in which both of the slots could
possibly be active. That is overly conservative and caused stack blowups
in Rust programs. Instead, check whether there is a single CFG node in
which both of the slots are possibly active *together*.
Fixes PR32488.
Patch by Ariel Ben-Yehuda <ariel.byd@gmail.com>
Reviewers: thanm, nagisa, llvm-commits, efriedma, rnk
Reviewed By: thanm
Subscribers: dotdash
Differential Revision: https://reviews.llvm.org/D31583
llvm-svn: 305193
|
|
|
|
| |
llvm-svn: 305180
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
32-byte load
I was looking closer at the x86 test diffs in D33866, and the first change seems like it
shouldn't happen in the first place. So this patch will resolve that.
Using Agner's tables and AMD docs, vperm2f128 and vinsertf128 have identical timing for
any given CPU model, so we should be able to interchange those without affecting perf.
But as we can see in some of the diffs here, using vperm2f128 allows load folding, so
we should take that opportunity to reduce code size and register pressure.
A secondary advantage is making AVX1 and AVX2 codegen more similar. Given that vperm2f128
was introduced with AVX1, we should be selecting it in all of the same situations that we
would with AVX2. If there's some reason that an AVX1 CPU would not want to use this
instruction, that should be fixed up in a later pass.
Differential Revision: https://reviews.llvm.org/D33938
llvm-svn: 305171
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: UADDO has 2 result, and one must check the result no before doing any kind of combine. Without it, the transform is invalid.
Reviewers: joerg
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34088
llvm-svn: 305162
|
|
|
|
| |
llvm-svn: 305154
|
|
|
|
| |
llvm-svn: 305153
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D28531
llvm-svn: 305137
|