| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
redundant shift left+right instructions).
AVX512 compare instructions return v*i1 types.
In cases where the number of elements in the returned value are less than 8, clang adds zeroes to get a mask of v8i1 type.
Later on it's replaced with CONCAT_VECTORS, which then is lowered to many DAG nodes including insert/extract element and shift right/left nodes.
The fact that AVX512 compare instructions put the result in a k register and zeroes all its upper bits allows us to remove the extra nodes simply by copying the result to the required register class.
When lowering, identify these cases and transform them into an INSERT_SUBVECTOR node (marked legal), then catch this pattern in instructions selection phase and transform it into one avx512 cmp instruction.
Differential Revision: https://reviews.llvm.org/D33188
llvm-svn: 305465
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
|
|
|
|
| |
llvm-svn: 305276
|
|
|
|
| |
llvm-svn: 305275
|
|
|
|
| |
llvm-svn: 305274
|
|
|
|
|
|
|
|
|
|
|
| |
The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing is just causing confusion.
We can rip out the llc ability in update_test_checks.py next and rename it, so it will
be clear that we have one script for llc check auto-generation and another for opt.
llvm-svn: 305206
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-fno-math-errno
Summary:
This change enables the sin(x) cos(x) -> sincos(x) optimization on GNU
target triples. This optimization was being inhibited when -ffast-math
wasn't set because sincos in GLibC does not set errno, while sin and cos
do. However, this optimization will only run if the attributes on the
sin/cos calls include readnone, which is how clang represents the fact
that it doesn't care about the errno values set by these functions (via
the -fno-math-errno flag).
Reviewers: hfinkel, bogner
Subscribers: mcrosier, javed.absar, llvm-commits, paul.redmond
Differential Revision: https://reviews.llvm.org/D32921
llvm-svn: 305204
|
|
|
|
|
|
|
|
|
|
| |
The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing is just causing confusion for newcomers. I plan to fix up more
x86 tests in a next commit. We can rip out the llc ability in update_test_checks.py after
that.
llvm-svn: 305202
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The old check for slot overlap treated 2 slots `S` and `T` as
overlapping if there existed a CFG node in which both of the slots could
possibly be active. That is overly conservative and caused stack blowups
in Rust programs. Instead, check whether there is a single CFG node in
which both of the slots are possibly active *together*.
Fixes PR32488.
Patch by Ariel Ben-Yehuda <ariel.byd@gmail.com>
Reviewers: thanm, nagisa, llvm-commits, efriedma, rnk
Reviewed By: thanm
Subscribers: dotdash
Differential Revision: https://reviews.llvm.org/D31583
llvm-svn: 305193
|
|
|
|
| |
llvm-svn: 305180
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
32-byte load
I was looking closer at the x86 test diffs in D33866, and the first change seems like it
shouldn't happen in the first place. So this patch will resolve that.
Using Agner's tables and AMD docs, vperm2f128 and vinsertf128 have identical timing for
any given CPU model, so we should be able to interchange those without affecting perf.
But as we can see in some of the diffs here, using vperm2f128 allows load folding, so
we should take that opportunity to reduce code size and register pressure.
A secondary advantage is making AVX1 and AVX2 codegen more similar. Given that vperm2f128
was introduced with AVX1, we should be selecting it in all of the same situations that we
would with AVX2. If there's some reason that an AVX1 CPU would not want to use this
instruction, that should be fixed up in a later pass.
Differential Revision: https://reviews.llvm.org/D33938
llvm-svn: 305171
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: UADDO has 2 result, and one must check the result no before doing any kind of combine. Without it, the transform is invalid.
Reviewers: joerg
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34088
llvm-svn: 305162
|
|
|
|
| |
llvm-svn: 305154
|
|
|
|
| |
llvm-svn: 305153
|
|
|
|
|
|
| |
If the inputs won't saturate during packing then we can treat the PACKSS as a truncation shuffle
llvm-svn: 305091
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This prevents against assertion errors like PR32659 which occur from a
replacement deleting a node after it's been added to the list argument
of RemoveDeadNodes. The specific failure from PR32659 does not
currently happen, but it is still potentially possible. The underlying
cause is that the callers of the change dfunction builds up a list of
nodes to delete after having moved their uses and it possible that a
move of a later node will cause a previously deleted nodes to be
deleted.
Reviewers: bkramer, spatel, davide
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33731
llvm-svn: 305070
|
|
|
|
| |
llvm-svn: 304989
|
|
|
|
|
|
|
| |
This patch will close PR32801.
Differential Revision: https://reviews.llvm.org/D33203
llvm-svn: 304986
|
|
|
|
|
|
|
|
|
|
|
|
| |
We already had a test to demonstrate PR33325:
https://bugs.llvm.org/show_bug.cgi?id=33325
I'm adding tests for general memcmp expansion (see D34005 / D33963) and:
https://bugs.llvm.org/show_bug.cgi?id=33329
...plus non-power-of-2 sizes, so we can see what that looks like currently or if expanded.
llvm-svn: 304979
|
|
|
|
|
|
|
|
| |
constants.
The initial patch was rejected: I fixed the issue and re-apply it.
llvm-svn: 304972
|
|
|
|
| |
llvm-svn: 304915
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we know that both operands of an unsigned integer vector comparison are non-negative,
then it's safe to directly use a signed-compare-greater-than instruction (the only non-equality
integer vector compare predicate provided by SSE/AVX).
We're intentionally not changing the condition code to signed in order to preserve the
existing transforms that use min/max/psubus below here.
This should solve PR33276:
https://bugs.llvm.org/show_bug.cgi?id=33276
Differential Revision: https://reviews.llvm.org/D33862
llvm-svn: 304909
|
|
|
|
|
|
| |
We were checking that the index was in range of the destination vector type, not the (larger) source vector type
llvm-svn: 304894
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: RKSimon, DavidKreitzer
Differential Revision: https://reviews.llvm.org/D33684
Patch by: Aleen Farhana <Farhana.aleen@gmail.com>
llvm-svn: 304834
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The patch makes instruction count the highest priority for
LSR solution for X86 (previously registers had highest priority).
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D30562
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 304824
|
|
|
|
|
|
|
|
| |
non-temporal (PR32744)
Extension to D33728
llvm-svn: 304798
|
|
|
|
|
|
|
|
|
|
|
|
| |
[Improve CodeGen Testing] This patch renables MIRPrinter print fields which have value equal to its default.
If -simplify-mir option is passed then MIRPrinter will not print such fields.
This change also required some lit test cases in CodeGen directory to be changed.
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D32304
llvm-svn: 304779
|
|
|
|
|
|
| |
The output isn't used anyways.
llvm-svn: 304766
|
|
|
|
|
|
|
|
| |
This is a negative test as pextrw doesn't write to all 32-bits of the
spilled GPR. This fold ended up happening when D32684 was landed and
covers the regression that motivated reverting it in r304762.
llvm-svn: 304763
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In testing, we've found yet another miscompile caused by the new tables.
And this one is even less clear how to fix (we could teach it to fold
a 16-bit load instead of the 32-bit load it wants, or block folding
entirely).
Also, the approach to excluding instructions seems increasingly to not
scale well.
I have left a more detailed analysis on the review log for the original
patch (https://reviews.llvm.org/D32684) along with suggested path
forward. I will land an additional test case that I wrote which covers
the code that was miscompiling (folding into the output of `pextrw`) in
a subsequent commit to keep this a pure revert.
For each commit reverted here, I've restricted the revert to the
non-test code touching the x86 fold table emission until the last commit
where I did revert the test updates. This means the *new* test cases
added for `insertps` and `xchg` remain untouched (and continue to pass).
Reverted commits:
r304540: [X86] Don't fold into memory operands into insertps in the ...
r304347: [TableGen] Adapt more places to getValueAsString now ...
r304163: [X86] Don't fold away the memory operand of an xchg.
r304123: Don't capture a temporary std::string in a StringRef.
r304122: Resubmit "[X86] Adding new LLVM TableGen backend that ..."
Original commit was in r304088, and after a string of fixes was reverted
previously in r304121 to fix build bots, and then re-landed in r304122.
llvm-svn: 304762
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Move ISel (and pre-isel) pass construction into TargetPassConfig
- Extract AsmPrinter construction into a helper function
Putting the ISel code into TargetPassConfig seems a lot more natural and
both changes together make make it easier to build custom pipelines
involving .mir in an upcoming commit. This moves MachineModuleInfo to an
earlier place in the pass pipeline which shouldn't have any effect.
llvm-svn: 304754
|
|
|
|
|
|
|
|
| |
There's nothing darwin-specific in these tests, and using that
setting causes extra phantom diffs when the auto-generated check
lines are regenerated today.
llvm-svn: 304753
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Running `llc -verify-dom-info` on the attached testcase results in a
crash in the verifier, due to a stale dominator tree.
i.e.
DominatorTree is not up to date!
Computed:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,7}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,6}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
Actual:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,9}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,8}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
[3] %safe_mod_func_int8_t_s_s.exit.i.i.i.lor.lhs.false.i61.i.i.i_crit_edge {6,7}
This is because in `SelectionDAGIsel` we split critical edges without
updating the corresponding dominator for the function (and we claim
in `MachineFunctionPass::getAnalysisUsage()` that the domtree is preserved).
We could either stop preserving the domtree in `getAnalysisUsage`
or tell `splitCriticalEdge()` to update it.
As the second option is easy to implement, that's the one I chose.
Differential Revision: https://reviews.llvm.org/D33800
llvm-svn: 304742
|
|
|
|
|
|
|
|
|
|
| |
(PR32743)
Missed SSE41 non-temporal load case in previous commit
Differential Revision: https://reviews.llvm.org/D33728
llvm-svn: 304722
|
|
|
|
|
|
|
|
| |
(PR32744)
Differential Revision: https://reviews.llvm.org/D33728
llvm-svn: 304718
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D33728
llvm-svn: 304717
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
coalescing/combine opportunities
We currently generate BUILD_VECTOR as a tree of UNPCKL shuffles of the same type:
e.g. for v4f32:
Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
: unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
The issue is because we are not placing sequential vector elements together early enough, we fail to recognise many combinable patterns - consecutive scalar loads, extractions etc.
Instead, this patch unpacks progressively larger sequential vector elements together:
e.g. for v4f32:
Step 1: unpcklps 0, 2 ==> X: <?, ?, 1, 0>
: unpcklps 1, 3 ==> Y: <?, ?, 3, 2>
Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
This does mean that we are creating UNPCKL shuffle of different value types, but the relevant combines that benefit from this are quite capable of handling the additional BITCASTs that are now included in the shuffle tree.
Differential Revision: https://reviews.llvm.org/D33864
llvm-svn: 304688
|
|
|
|
| |
llvm-svn: 304683
|
|
|
|
| |
llvm-svn: 304660
|
|
|
|
|
|
| |
Generalized existing SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT) code to support AssertZext + PEXTRW/PEXTRB cases as well.
llvm-svn: 304659
|
|
|
|
|
|
|
|
| |
There's nothing darwin-specific in these tests, and using
that setting causes extra phantom diffs when the auto-generated
check lines are regenerated today.
llvm-svn: 304614
|
|
|
|
|
|
| |
Turns out I might not have further changes to make here, but with the way I'd written the tests, even I couldn't tell that. :(
llvm-svn: 304613
|
|
|
|
| |
llvm-svn: 304612
|
|
|
|
|
|
|
|
|
| |
This pass allows to run the register scavenging independently of
PrologEpilogInserter to allow targeted testing.
Also adds some basic register scavenging tests.
llvm-svn: 304606
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since r288804, we try to lower build_vectors on AVX using broadcasts of
float/double. However, when we broadcast integer values that happen to
have a NaN float bitpattern, we lose the NaN payload, thereby changing
the integer value being broadcast.
This is caused by ConstantFP::get, to which we pass the splat i32 as
a float (by bitcasting it using bitsToFloat). ConstantFP::get takes
a double parameter, so we end up lossily converting a single-precision
NaN to double-precision.
Instead, avoid any kinds of conversions by directly building an APFloat
from the splatted APInt.
Note that this also fixes another piece of code (broadcast of
subvectors), that currently isn't susceptible to the same problem.
Also note that we could really just use APInt and ConstantInt
throughout: the constant pool type doesn't matter much. Still, for
consistency, use the appropriate type.
llvm-svn: 304590
|
|
|
|
| |
llvm-svn: 304586
|
|
|
|
|
|
|
|
|
|
| |
This initial patch doesn't actually do much useful. It's just to show where the new code goes. Once this is in, I'll extend the verification logic to check more useful properties.
For those curious, the more complicated version of this patch already found one very suspicious thing.
Differential Revision: https://reviews.llvm.org/D33819
llvm-svn: 304564
|
|
|
|
| |
llvm-svn: 304557
|
|
|
|
| |
llvm-svn: 304548
|
|
|
|
| |
llvm-svn: 304547
|