| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
models"
Don't try to generate large PIC code for non-ELF targets. Neither COFF
nor MachO have relocations for large position independent code, and
users have been using "large PIC" code models to JIT 64-bit code for a
while now. With this change, if they are generating ELF code, their
JITed code will truly be PIC, but if they target MachO or COFF, it will
contain 64-bit immediates that directly reference external symbols. For
a JIT, that's perfectly fine.
llvm-svn: 337740
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
code models""
Reverting because this is causing failures in the LLDB test suite on
GreenDragon.
LLVM ERROR: unsupported relocation with subtraction expression, symbol
'__GLOBAL_OFFSET_TABLE_' can not be undefined in a subtraction
expression
llvm-svn: 335894
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
models"
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
I restricted the MCJIT/eh-lg-pic.ll test to Linux, since the large PIC
code model is not implemented for MachO yet.
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335508
|
|
|
|
|
|
| |
MCJIT can't handle R_X86_64_GOT64 yet.
llvm-svn: 335300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
Reviewers: chandlerc, echristo
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335297
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SimplifyCFG allows tail merging with code which terminates in
unreachable which, in turn, makes it possible for an invoke to end up in
a funclet which it was not originally part of.
Using operand bundles on invokes allows us to determine whether or not
an invoke was part of a funclet in the source program.
Furthermore, it allows us to unambiguously answer questions about the
legality of inlining into call sites which the personality may have
trouble with.
Differential Revision: http://reviews.llvm.org/D15517
llvm-svn: 255674
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
|
|
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
llvm-svn: 252318
|