summaryrefslogtreecommitdiffstats
path: root/llvm/test/CodeGen/X86/byval7.ll
Commit message (Collapse)AuthorAgeFilesLines
* [NFC] Update memcpy testsGuillaume Chatelet2019-05-061-5/+23
| | | | | | | | | | | | | | | | Summary: Runs utils/update_llc_test_checks.py on a few memcpy files Reviewers: courbet Subscribers: llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D61507 Remove cfi noise by adding nounwind llvm-svn: 360023
* X86: Do not use llc -march in tests.Matthias Braun2017-08-021-1/+1
| | | | | | | | | | | | | | | `llc -march` is problematic because it only switches the target architecture, but leaves the operating system unchanged. This occasionally leads to indeterministic tests because the OS from LLVM_DEFAULT_TARGET_TRIPLE is used. However we can simply always use `llc -mtriple` instead. This changes all the tests to do this to avoid people using -march when they copy and paste parts of tests. See also the discussion in https://reviews.llvm.org/D35287 llvm-svn: 309774
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Enable MI Sched for x86.Andrew Trick2013-10-151-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | This changes the SelectionDAG scheduling preference to source order. Soon, the SelectionDAG scheduler can be bypassed saving a nice chunk of compile time. Performance differences that result from this change are often a consequence of register coalescing. The register coalescer is far from perfect. Bugs can be filed for deficiencies. On x86 SandyBridge/Haswell, the source order schedule is often preserved, particularly for small blocks. Register pressure is generally improved over the SD scheduler's ILP mode. However, we are still able to handle large blocks that require latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also attempts to discover the critical path in single-block loops and adjust heuristics accordingly. The MI scheduler relies on the new machine model. This is currently unimplemented for AVX, so we may not be generating the best code yet. Unit tests are updated so they don't depend on SD scheduling heuristics. llvm-svn: 192750
* Mass update to CodeGen tests to use CHECK-LABEL for labels corresponding to ↵Stephen Lin2013-07-141-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | function definitions for more informative error messages. No functionality change and all updated tests passed locally. This update was done with the following bash script: find test/CodeGen -name "*.ll" | \ while read NAME; do echo "$NAME" if ! grep -q "^; *RUN: *llc.*debug" $NAME; then TEMP=`mktemp -t temp` cp $NAME $TEMP sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \ while read FUNC; do sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP done sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP mv $TEMP $NAME fi done llvm-svn: 186280
* Revert "Temporarily enable MI-Sched on X86."Andrew Trick2013-06-251-2/+2
| | | | | | This reverts commit 98a9b72e8c56dc13a2617de84503a3d78352789c. llvm-svn: 184823
* Temporarily enable MI-Sched on X86.Andrew Trick2013-06-241-2/+2
| | | | | | | Sorry for the unit test churn. I'll try to make the change permanently next time. llvm-svn: 184705
* Prepare remaining tests for -join-physreg going away.Jakob Stoklund Olesen2011-05-041-1/+0
| | | | llvm-svn: 130893
* Revert 127359; it broke lencod.Stuart Hastings2011-03-101-2/+4
| | | | llvm-svn: 127382
* X86 byval copies no longer always_inline. <rdar://problem/8706628>Stuart Hastings2011-03-091-4/+2
| | | | llvm-svn: 127359
* Fix sdisel memcpy, memset, memmove lowering:Evan Cheng2010-04-011-1/+8
| | | | | | | | | | | | | 1. Makes it possible to lower with floating point loads and stores. 2. Avoid unaligned loads / stores unless it's fast. 3. Fix some memcpy lowering logic bug related to when to optimize a load from constant string into a constant. 4. Adjust x86 memcpy lowering threshold to make it more sane. 5. Fix x86 target hook so it uses vector and floating point memory ops more effectively. rdar://7774704 llvm-svn: 100090
* Eliminate more uses of llvm-as and llvm-dis.Dan Gohman2009-09-081-1/+1
| | | | llvm-svn: 81290
* Implement support for using modeling implicit-zero-extension on x86-64Dan Gohman2009-04-081-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. llvm-svn: 68576
* Drop ISD::MEMSET, ISD::MEMMOVE, and ISD::MEMCPY, which are not LegalDan Gohman2008-04-121-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | on any current target and aren't optimized in DAGCombiner. Instead of using intermediate nodes, expand the operations, choosing between simple loads/stores, target-specific code, and library calls, immediately. Previously, the code to emit optimized code for these operations was only used at initial SelectionDAG construction time; now it is used at all times. This fixes some cases where rep;movs was being used for small copies where simple loads/stores would be better. This also cleans up code that checks for alignments less than 4; let the targets make that decision instead of doing it in target-independent code. This allows x86 to use rep;movs in low-alignment cases. Also, this fixes a bug that resulted in the use of rep;stos for memsets of 0 with non-constant memory size when the alignment was at least 4. It's better to use the library in this case, which can be significantly faster when the size is large. This also preserves more SourceValue information when memory intrinsics are lowered into simple loads/stores. llvm-svn: 49572
* Alignment of struct containing vectors depends onDale Johannesen2008-02-091-1/+1
| | | | | | | whether SSE is present, on Darwin anyway. Make it explicit. llvm-svn: 46909
* Let each target decide byval alignment. For X86, it's 4-byte unless the ↵Evan Cheng2008-01-231-0/+14
aggregare contains SSE vector(s). For x86-64, it's max of 8 or alignment of the type. llvm-svn: 46286
OpenPOWER on IntegriCloud