summaryrefslogtreecommitdiffstats
path: root/llvm/test/CodeGen/ARM/sjlj-prepare-critical-edge.ll
Commit message (Collapse)AuthorAgeFilesLines
* ARM: stop emitting blx instructions for most calls on MachO.Tim Northover2016-05-101-1/+1
| | | | | | | | | | | I'm really not sure why we were in the first place, it's the linker's job to convert between BL/BLX as necessary. Even worse, using BLX left Thumb calls that could be locally resolved completely unencodable since all offsets to BLX are multiples of 4. rdar://26182344 llvm-svn: 269101
* Don't delete empty preheaders in CodeGenPrepare if it would create a ↵Chuang-Yu Cheng2016-04-051-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | critical edge Presently, CodeGenPrepare deletes all nearly empty (only phi and branch) basic blocks. This pass can delete loop preheaders which frequently creates critical edges. A preheader can be a convenient place to spill registers to the stack. If the entrance to a loop body is a critical edge, then spills may occur in the loop body rather than immediately before it. This patch protects loop preheaders from deletion in CodeGenPrepare even if they are nearly empty. Since the patch alters the CFG, it affects a large number of test cases. In most cases, the changes are merely cosmetic (basic blocks have different names or instruction orders change slightly). I am somewhat concerned about the test/CodeGen/Mips/brdelayslot.ll test case. If the loop preheader is not deleted, then the MIPS backend does not take advantage of a branch delay slot. Consequently, I would like some close review by a MIPS expert. The patch also partially subsumes D16893 from George Burgess IV. George correctly notes that CodeGenPrepare does not actually preserve the dominator tree. I think the dominator tree was usually not valid when CodeGenPrepare ran, but I am using LoopInfo to mark preheaders, so the dominator tree is now always valid before CodeGenPrepare. Author: Tom Jablin (tjablin) Reviewers: hfinkel george.burgess.iv vkalintiris dsanders kbarton cycheng http://reviews.llvm.org/D16984 llvm-svn: 265397
* Scaling up values in ARMBaseInstrInfo::isProfitableToIfCvt() before they are ↵Cong Hou2015-09-181-1/+1
| | | | | | | | | | scaled by a probability to avoid precision issue. In ARMBaseInstrInfo::isProfitableToIfCvt(), there is a simple cost model in which the number of cycles is scaled by a probability to estimate the cost. However, when the number of cycles is small (which is usually the case), there is a precision issue after the computation. To avoid this issue, this patch scales those cycles by 1024 (chosen to make the multiplication a litter faster) before they are scaled by the probability. Other variables are also scaled up for the final comparison. Differential Revision: http://reviews.llvm.org/D12742 llvm-svn: 248018
* Move the personality function from LandingPadInst to FunctionDavid Majnemer2015-06-171-9/+9
| | | | | | | | | | | | | | | | | | | The personality routine currently lives in the LandingPadInst. This isn't desirable because: - All LandingPadInsts in the same function must have the same personality routine. This means that each LandingPadInst beyond the first has an operand which produces no additional information. - There is ongoing work to introduce EH IR constructs other than LandingPadInst. Moving the personality routine off of any one particular Instruction and onto the parent function seems a lot better than have N different places a personality function can sneak onto an exceptional function. Differential Revision: http://reviews.llvm.org/D10429 llvm-svn: 239940
* ARM: When re-creating a branch via InsertBranch, preserve CPSR flags.Peter Collingbourne2015-04-231-1/+1
| | | | | | | | | | | | | In particular, this preserves the kill flag, which allows the Thumb2 cbn?z optimization to be applied in cases where a branch has been re-created after the live variables analysis pass, e.g. by the machine block placement pass. This appears to be low risk; a number of other targets seem to already be doing something similar, e.g. AArch64, PowerPC. Differential Revision: http://reviews.llvm.org/D9184 llvm-svn: 235639
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-03-131-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | gep operator Similar to gep (r230786) and load (r230794) changes. Similar migration script can be used to update test cases, which successfully migrated all of LLVM and Polly, but about 4 test cases needed manually changes in Clang. (this script will read the contents of stdin and massage it into stdout - wrap it in the 'apply.sh' script shown in previous commits + xargs to apply it over a large set of test cases) import fileinput import sys import re rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL) def conv(match): line = match.group(1) line += match.group(4) line += ", " line += match.group(2) return line line = sys.stdin.read() off = 0 for match in re.finditer(rep, line): sys.stdout.write(line[off:match.start()]) sys.stdout.write(conv(match)) off = match.end() sys.stdout.write(line[off:]) llvm-svn: 232184
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* Fix a bug in DemoteRegToStack where a reload instruction was inserted into theAkira Hatanaka2015-02-091-1/+127
| | | | | | | | | | | | | | | | | | wrong basic block. This would happen when the result of an invoke was used by a phi instruction in the invoke's normal destination block. An instruction to reload the invoke's value would get inserted before the critical edge was split and a new basic block (which is the correct insertion point for the reload) was created. This commit fixes the bug by splitting the critical edge before all the reload instructions are inserted. Also, hoist up the code which computes the insertion point to the only place that need that computation. rdar://problem/15978721 llvm-svn: 228566
* [SjLj Prepare] When demoting an invoke instructions to the stack, if the normalChad Rosier2013-02-051-0/+67
edge is critical, then split it so we can insert the store. rdar://13126179 llvm-svn: 174418
OpenPOWER on IntegriCloud