| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
| |
It looks like there are two target-independent but not GISel instructions that
need legalization, IMPLICIT_DEF and PHI. These are already anomalies since
their operands have important LLTs attached, so to make things more uniform it
seems like a good idea to add generic variants. Starting with G_IMPLICIT_DEF.
llvm-svn: 306875
|
| |
|
|
|
|
| |
https://reviews.llvm.org/D34837
llvm-svn: 306766
|
| |
|
|
|
|
|
| |
Also add IRTranslator support.
https://reviews.llvm.org/D34710
llvm-svn: 306475
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Without this check, COPY instructions can actually be one of the generic casts
in disguise. That's confusing and bad.
At some point during ISel this restriction has to be relaxed since the fully
selected instructions will usually use COPY for those purposes. Right now I
think it's possible that relaxation occurs during RegBankSelect (hence the
change there). I'm not convinced that's where it belongs long-term though.
llvm-svn: 306470
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
After this patch, we finally have test cases that require multiple
instruction emission.
Depends on D33590
Reviewers: ab, qcolombet, t.p.northover, rovka, kristof.beyls
Subscribers: javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D33596
llvm-svn: 306388
|
| |
|
|
|
|
|
| |
This is the dual problem to legalizing G_INSERTs so most of the code and
testing was cribbed from there.
llvm-svn: 306328
|
| |
|
|
|
|
|
|
| |
It was trying to do too many things. The basic lumping together of values for
legalization purposes is now handled by G_MERGE_VALUES. More complex things
involving gaps and odd sizes are handled by G_INSERT sequences.
llvm-svn: 306120
|
| |
|
|
|
|
|
|
| |
G_SEQUENCE is going away soon so as a first step the MachineIRBuilder needs to
be taught how to emulate it with alternatives. We use G_MERGE_VALUES where
possible, and a sequence of G_INSERTs if not.
llvm-svn: 306119
|
| |
|
|
|
|
|
|
| |
https://reviews.llvm.org/D34372
Reviewed by dsanders
llvm-svn: 305824
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
As part of this
* Emitted instructions now have named MachineInstr variables associated
with them. This isn't particularly important yet but it's a small step
towards multiple-insn emission.
* constrainSelectedInstRegOperands() is no longer hardcoded. It's now added
as the ConstrainOperandsToDefinitionAction() action. COPY_TO_REGCLASS uses
an alternate constraint mechanism ConstrainOperandToRegClassAction() which
supports arbitrary constraints such as that defined by COPY_TO_REGCLASS.
Reviewers: ab, qcolombet, t.p.northover, rovka, kristof.beyls, aditya_nandakumar
Reviewed By: ab
Subscribers: javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D33590
llvm-svn: 305791
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When legalizing G_LOAD/G_STORE using NarrowScalar, we should avoid emitting
%0 = G_CONSTANT ty 0
%1 = G_GEP %x, %0
since it's cheaper to not emit the redundant instructions than it is to fold them
away later.
Reviewers: qcolombet, t.p.northover, ab, rovka, aditya_nandakumar, kristof.beyls
Reviewed By: qcolombet
Subscribers: javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D32746
llvm-svn: 305340
|
| |
|
|
|
|
|
|
|
|
|
|
| |
[Improve CodeGen Testing] This patch renables MIRPrinter print fields which have value equal to its default.
If -simplify-mir option is passed then MIRPrinter will not print such fields.
This change also required some lit test cases in CodeGen directory to be changed.
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D32304
llvm-svn: 304779
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: qcolombet, ab, t.p.northover, aditya_nandakumar, dsanders
Reviewed By: qcolombet
Subscribers: rovka, kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D33724
llvm-svn: 304743
|
| |
|
|
|
|
|
| |
We can infer this from the incoming MIR, so there's no reason to
represent it with a special flag.
llvm-svn: 304246
|
| |
|
|
|
|
|
|
|
| |
There is no guarantee that the first use of a constant that is traversed
is actually the first in the related basic block. Thus, if we use that
as the insertion point we may end up with definitions that don't
dominate there use.
llvm-svn: 304244
|
| |
|
|
|
|
|
| |
This should fix most of the issue we have right now with constants being
spilled all over the place.
llvm-svn: 304052
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r299287 plus clean-ups.
The localizer pass is a helper pass that could be run at O0 in the GISel
pipeline to work around the deficiency of the fast register allocator.
It basically shortens the live-ranges of the constants so that the
allocator does not spill all over the place.
Long term fix would be to make the greedy allocator fast.
llvm-svn: 304051
|
| |
|
|
|
|
|
|
| |
For stores, check if the stored value is defined by a floating point
instruction and if yes, we return a default mapping with FPR instead
of GPR.
llvm-svn: 302679
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
|
| |
|
|
|
|
|
|
|
|
|
| |
This fixes PR32550, in a way that does not imply running the greedy
mode at O0.
The fix consists in checking if a load is used by any floating point
instruction and if yes, we return a default mapping with FPR instead
of GPR.
llvm-svn: 302453
|
| |
|
|
|
|
|
| |
Reviewed by Quentin
https://reviews.llvm.org/D32814
llvm-svn: 302196
|
| |
|
|
|
|
| |
rdar://problem/31926379
llvm-svn: 302166
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
belong to.
canMutate() was returning true when the operands were all in the same order as
the matched instruction. However, it wasn't checking the operands were actually
on that instruction. This worked when we could only match a single instruction
but the addition of nested instruction matching led to cases where the operands
could be split across multiple instructions. canMutate() now returns false if
operands belong to instructions other than the root of the match.
llvm-svn: 301077
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes PR32471.
As comment 10 on that bug report highlights
(https://bugs.llvm.org//show_bug.cgi?id=32471#c10), there are quite a
few different defendable design tradeoffs that could be made, including
not representing pointers at all in LLT.
I decided to go for representing vector-of-pointer as a concept in LLT,
while keeping the size of the LLT type 64 bits (this is an increase from
48 bits before). My rationale for keeping pointers explicit is that on
some targets probably it's very handy to have the distinction between
pointer and non-pointer (e.g. 68K has a different register bank for
pointers IIRC). If we keep a scalar pointer, it probably is easiest to
also have a vector-of-pointers to keep LLT relatively conceptually clean
and orthogonal, while we don't have a very strong reason to break that
orthogonality. Once we gain more experience on the use of LLT, we can
of course reconsider this direction.
Rejecting vector-of-pointer types in the IRTranslator is also an option
to avoid the crash reported in PR32471, but that is only a very
short-term solution; also needs quite a bit of code tweaks in places,
and is probably fragile. Therefore I didn't consider this the best
option.
llvm-svn: 300664
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts r300535 and r300537.
The newly added tests in test/CodeGen/AArch64/GlobalISel/arm64-fallback.ll
produces slightly different code between LLVM versions being built with different compilers.
E.g., dependent on the compiler LLVM is built with, either one of the following
can be produced:
remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg2; (in function: vector_of_pointers_extractelement)
remark: <unknown>:0:0: unable to legalize instruction: %vreg2<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg0; (in function: vector_of_pointers_extractelement)
Non-determinism like this is clearly a bad thing, so reverting this until
I can find and fix the root cause of the non-determinism.
llvm-svn: 300538
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes PR32471.
As comment 10 on that bug report highlights
(https://bugs.llvm.org//show_bug.cgi?id=32471#c10), there are quite a
few different defendable design tradeoffs that could be made, including
not representing pointers at all in LLT.
I decided to go for representing vector-of-pointer as a concept in LLT,
while keeping the size of the LLT type 64 bits (this is an increase from
48 bits before). My rationale for keeping pointers explicit is that on
some targets probably it's very handy to have the distinction between
pointer and non-pointer (e.g. 68K has a different register bank for
pointers IIRC). If we keep a scalar pointer, it probably is easiest to
also have a vector-of-pointers to keep LLT relatively conceptually clean
and orthogonal, while we don't have a very strong reason to break that
orthogonality. Once we gain more experience on the use of LLT, we can
of course reconsider this direction.
Rejecting vector-of-pointer types in the IRTranslator is also an option
to avoid the crash reported in PR32471, but that is only a very
short-term solution; also needs quite a bit of code tweaks in places,
and is probably fragile. Therefore I didn't consider this the best
option.
llvm-svn: 300535
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Legalize only if the type is marked as Legal or Custom. If not, return Unsupported as LegalizerHelper is not able to handle non-power-of-2 types right now.
Reviewers: qcolombet, aditya_nandakumar, dsanders, t.p.northover, kristof.beyls, javed.absar, ab
Reviewed By: kristof.beyls, ab
Subscribers: dberris, rovka, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31711
llvm-svn: 299929
|
| |
|
|
|
|
| |
In preparation for allowing allocas to have non-0 addrspace.
llvm-svn: 299876
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The original instruction might get legalized and erased and expanded
into intermediate instructions and the intermediate instructions might
fail legalization. This end up in reporting GISelFailure on the erased
instruction.
Instead report GISelFailure on the intermediate instruction which failed
legalization.
Reviewed by: ab
llvm-svn: 299802
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Lift the restrictions that prevented the tree walking introduced in the
previous change and add support for patterns like:
(G_ADD (G_MUL (G_SEXT $src1), (G_SEXT $src2)), $src3) -> SMADDWrrr $dst, $src1, $src2, $src3
Also adds support for G_SEXT and G_ZEXT to support these cases.
One particular aspect of this that I should draw attention to is that I've
tried to be overly conservative in determining the safety of matches that
involve non-adjacent instructions and multiple basic blocks. This is intended
to be used as a cheap initial check and we may add a more expensive check in
the future. The current rules are:
* Reject if any instruction may load/store (we'd need to check for intervening
memory operations.
* Reject if any instruction has implicit operands.
* Reject if any instruction has unmodelled side-effects.
See isObviouslySafeToFold().
Reviewers: t.p.northover, javed.absar, qcolombet, aditya_nandakumar, ab, rovka
Reviewed By: ab
Subscribers: igorb, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30539
llvm-svn: 299430
|
| |
|
|
|
|
|
|
| |
This reverts commit r299283.
Didn't intend to commit this :(
llvm-svn: 299287
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
REG_SEQUENCE falls into the same category as COPY for operands mapping:
- They don't have MCInstrDesc with register constraints
- The input variable could use whatever register classes
- It is possible to have register class already assigned to the operands
In particular, given REG_SEQUENCE are always target specific because of
the subreg indices. Those indices must apply to the register class of
the definition of the REG_SEQUENCE and therefore, the target must set a
register class to that definition. As a result, the generic code can
always use that register class to derive a valid mapping for a
REG_SEQUENCE.
llvm-svn: 299285
|
| |
|
|
|
|
| |
WIP
llvm-svn: 299283
|
| |
|
|
|
|
|
|
| |
A majority of loads and stores at O0 access an alloca.
It's trivial to fold the G_FRAME_INDEX into the instruction; do it.
llvm-svn: 298864
|
| |
|
|
|
|
|
|
|
|
| |
We're not to the point of supporting the load/store patterns yet
(because they extensively use PatFrags).
But in the meantime, we can implement some of the simplest addressing
modes.
llvm-svn: 298863
|
| |
|
|
|
|
| |
These occur very frequently, and are quite trivial to catch.
llvm-svn: 298862
|
| |
|
|
|
|
|
|
|
|
| |
CBZ/CBNZ represent a substantial portion of all conditional branches.
Look through G_ICMP to select them.
We can't use tablegen yet because the existing patterns match an
AArch64ISD node.
llvm-svn: 298856
|
| |
|
|
| |
llvm-svn: 298854
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch changes the behavior of IRTranslating intrinsics where we
now create VREG + G_CONSTANT for ConstantInt values. We already do this
for FloatingPoint values. This makes it easier for the backends to
select code and it won't have to de-duplicate creation+selection of
constants.
Reviewed by: ab
llvm-svn: 298473
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Quentin points out that r298358 would cause us to emit different code
with debug info. That's a big no-no; also erase the instructions that
only live thanks to DBG_VALUE users.
Adrian explained how this is an existing problem and an OK thing to do:
clang has allocas for all variables so shouldn't be affected at -O0, but
swift uses a bit of inlineasm to explicitly keep values live for the
purpose of debug info quality. I'm not sure there is a better scheme.
llvm-svn: 298460
|
| |
|
|
|
|
|
|
|
|
| |
MI can represent fallthrough to layout successor blocks, and our
post-isel representation uses that extensively.
We might as well use it too, to avoid translating and carrying along
unnecessary branches.
llvm-svn: 298459
|
| |
|
|
|
|
|
| |
A bool is represented by a single byte, which the ARM ABI requires to be either
0 or 1. So we cannot use G_ANYEXT when legalizing the type.
llvm-svn: 298439
|
| |
|
|
|
|
|
|
| |
clang-lld-x86_64-2stage fails because of the order
of the instructions. `CHECK-DAG` directives should
fix the problem.
llvm-svn: 298367
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: qcolombet, aditya_nandakumar, t.p.northover, javed.absar, ab, dsanders
Reviewed By: javed.absar
Subscribers: dberris, rovka, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30962
llvm-svn: 298347
|
| |
|
|
|
|
| |
Otherwise a scheduler might do bad things to the code we produce.
llvm-svn: 298311
|
| |
|
|
|
|
|
| |
Otherwise the fallback path fails with an assertion on AAPCS AArch64 targets,
when "long double" is encountered.
llvm-svn: 298273
|
| |
|
|
|
|
|
|
|
|
|
| |
This commit adds a parameter that lets us pass in the calling convention
of the call to CallLowering::lowerCall. This allows us to handle
situations where the calling convetion of the callee is different from
that of the caller.
Differential Revision: https://reviews.llvm.org/D31039
llvm-svn: 298254
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Folding instructions when selecting can cause them to become dead.
Don't select these dead instructions (if they don't have other side
effects, and don't define physical registers).
Preserve existing tests by adding COPYs.
In some tests, the G_CONSTANT vregs never get constrained to a class:
the only use of the vreg was folded into another instruction, so the
G_CONSTANT, now dead, never gets selected.
llvm-svn: 298224
|
| |
|
|
| |
llvm-svn: 298223
|
| |
|
|
|
|
|
|
|
|
|
|
| |
And remove some redundant bitcast tests.
Also split the test functions themselves: it makes it obvious to see
what's tested where and what isn't, it makes the tests much easier to
read and manually update, and, most importantly, it makes them almost
trivial to update using tooling. Yes, it's obnoxiously verbose, but
said tooling helps upgrade to better MIR syntax whenever available.
llvm-svn: 298222
|