summaryrefslogtreecommitdiffstats
path: root/llvm/test/Analysis/DependenceAnalysis/Invariant.ll
Commit message (Collapse)AuthorAgeFilesLines
* [DA][NewPM] Add a printerpass and port the testsuitePhilip Pfaffe2019-01-081-0/+2
| | | | | | | | | The new-pm version of DA is untested. Testing requires a printer, so add that and use it in the existing DA tests. Differential Revision: https://reviews.llvm.org/D56386 llvm-svn: 350624
* [DA] Enable -da-delinearize by defaultDavid Green2018-06-211-1/+1
| | | | | | | | | | | | | This enables da-delinearize in Dependence Analysis for delinearizing array accesses into multiple dimensions. This can help to increase the power of Dependence analysis on multi-dimensional arrays and prevent having to fall back to the slower and less accurate MIV tests. It adds static checks on the bounds of the arrays to ensure that one dimension doesn't overflow into another, and brings our code in line with our tests. Differential Revision: https://reviews.llvm.org/D45872 llvm-svn: 335217
* DA: remove uses of GEP, only ask SCEVSebastian Pop2018-03-061-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's been quite some time the Dependence Analysis (DA) is broken, as it uses the GEP representation to "identify" multi-dimensional arrays. It even wrongly detects multi-dimensional arrays in single nested loops: from test/Analysis/DependenceAnalysis/Coupled.ll, example @couple6 ;; for (long int i = 0; i < 50; i++) { ;; A[i][3*i - 6] = i; ;; *B++ = A[i][i]; DA used to detect two subscripts, which makes no sense in the LLVM IR or in C/C++ semantics, as there are no guarantees as in Fortran of subscripts not overlapping into a next array dimension: maximum nesting levels = 1 SrcPtrSCEV = %A DstPtrSCEV = %A using GEPs subscript 0 src = {0,+,1}<nuw><nsw><%for.body> dst = {0,+,1}<nuw><nsw><%for.body> class = 1 loops = {1} subscript 1 src = {-6,+,3}<nsw><%for.body> dst = {0,+,1}<nuw><nsw><%for.body> class = 1 loops = {1} Separable = {} Coupled = {1} With the current patch, DA will correctly work on only one dimension: maximum nesting levels = 1 SrcSCEV = {(-2424 + %A)<nsw>,+,1212}<%for.body> DstSCEV = {%A,+,404}<%for.body> subscript 0 src = {(-2424 + %A)<nsw>,+,1212}<%for.body> dst = {%A,+,404}<%for.body> class = 1 loops = {1} Separable = {0} Coupled = {} This change removes all uses of GEP from DA, and we now only rely on the SCEV representation. The patch does not turn on -da-delinearize by default, and so the DA analysis will be more conservative in the case of multi-dimensional memory accesses in nested loops. I disabled some interchange tests, as the DA is not able to disambiguate the dependence anymore. To make DA stronger, we may need to compute a bound on the number of iterations based on the access functions and array dimensions. The patch cleans up all the CHECKs in test/Transforms/LoopInterchange/*.ll to avoid checking for snippets of LLVM IR: this form of checking is very hard to maintain. Instead, we now check for output of the pass that are more meaningful than dozens of lines of LLVM IR. Some tests now require -debug messages and thus only enabled with asserts. Patch written by Sebastian Pop and Aditya Kumar. Differential Revision: https://reviews.llvm.org/D35430 llvm-svn: 326837
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* (no commit message)Preston Briggs2013-06-281-0/+40
llvm-svn: 185187
OpenPOWER on IntegriCloud