| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-x86-experimental-vector-widening-legalization by default."
The assert that caused this to be reverted should be fixed now.
Original commit message:
This patch changes our defualt legalization behavior for 16, 32, and
64 bit vectors with i8/i16/i32/i64 scalar types from promotion to
widening. For example, v8i8 will now be widened to v16i8 instead of
promoted to v8i16. This keeps the elements widths the same and pads
with undef elements. We believe this is a better legalization strategy.
But it carries some issues due to the fragmented vector ISA. For
example, i8 shifts and multiplies get widened and then later have
to be promoted/split into vXi16 vectors.
This has the potential to cause regressions so we wanted to get
it in early in the 10.0 cycle so we have plenty of time to
address them.
Next steps will be to merge tests that explicitly test the command
line option. And then we can remove the option and its associated
code.
llvm-svn: 368183
|
|
|
|
|
|
|
|
|
| |
This reverts commit 3de33245d2c992c9e0af60372043540b60f3a810.
This commit broke the MSan buildbots. See
https://reviews.llvm.org/rL367901 for more information.
llvm-svn: 368107
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes our defualt legalization behavior for 16, 32, and
64 bit vectors with i8/i16/i32/i64 scalar types from promotion to
widening. For example, v8i8 will now be widened to v16i8 instead of
promoted to v8i16. This keeps the elements widths the same and pads
with undef elements. We believe this is a better legalization strategy.
But it carries some issues due to the fragmented vector ISA. For
example, i8 shifts and multiplies get widened and then later have
to be promoted/split into vXi16 vectors.
This has the potential to cause regressions so we wanted to get
it in early in the 10.0 cycle so we have plenty of time to
address them.
Next steps will be to merge tests that explicitly test the command
line option. And then we can remove the option and its associated
code.
llvm-svn: 367901
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(PR33744)
As discussed on PR33744, this patch relaxes ShuffleKind::SK_Alternate which requires shuffle masks to only match an alternating pattern from its 2 sources:
e.g. v4f32: <0,5,2,7> or <4,1,6,3>
This seems far too restrictive as most SIMD hardware which will implement it using a general blend/bit-select instruction, so replaces it with SK_Select, permitting elements from either source as long as they are inline:
e.g. v4f32: <0,5,2,7>, <4,1,6,3>, <0,1,6,7>, <4,1,2,3> etc.
This initial patch just updates the name and cost model shuffle mask analysis, later patch reviews will update SLP to better utilise this - it still limits itself to SK_Alternate style patterns.
Differential Revision: https://reviews.llvm.org/D47985
llvm-svn: 334513
|
|
|
|
| |
llvm-svn: 334351
|
|
|
|
| |
llvm-svn: 330433
|
|
|
|
|
|
| |
We're mostly testing with generic isa attributes, but PR36550 will require testing of specific target's scheduler models as well.
llvm-svn: 330056
|
|
|
|
|
|
| |
update_analyze_test_checks.py
llvm-svn: 329410
|
|
|
|
|
|
| |
shuffle costs
llvm-svn: 329168
|
|
|
|
|
|
| |
Actual codegen is much better than the extract+insert patterns that was assumed.
llvm-svn: 290962
|
|
This patch:
1) Improves the cost model for x86 alternate shuffles (originally
added at revision 211339);
2) Teaches the Cost Model Analysis pass how to analyze alternate shuffles.
Alternate shuffles are a special kind of blend; on x86, we can often
easily lowered alternate shuffled into single blend
instruction (depending on the subtarget features).
The existing cost model didn't take into account subtarget features.
Also, it had a couple of "dead" entries for vector types that are never
legal (example: on x86 types v2i32 and v2f32 are not legal; those are
always either promoted or widened to 128-bit vector types).
The new x86 cost model takes into account what target features we have
before returning the shuffle cost (i.e. the number of instructions
after the blend is lowered/expanded).
This patch also teaches the Cost Model Analysis how to identify and analyze
alternate shuffles (i.e. 'SK_Alternate' shufflevector instructions):
- added function 'isAlternateVectorMask';
- added some logic to check if an instruction is a alternate shuffle and, in
case, call the target specific TTI to get the corresponding shuffle cost;
- added a test to verify the cost model analysis on alternate shuffles.
llvm-svn: 212296
|