summaryrefslogtreecommitdiffstats
path: root/llvm/test/Analysis/CallGraph
Commit message (Collapse)AuthorAgeFilesLines
* Revert "[CallGraph] Refine call graph for indirect calls with !callees metadata"Benjamin Kramer2019-08-162-36/+2
| | | | | | | This reverts commit r369025. Crashes clang, test case is on the mailing list. llvm-svn: 369096
* [CallGraph] Refine call graph for indirect calls with !callees metadataMark Lacey2019-08-152-2/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For indirect call sites having a small set of possible callees, !callees metadata can be used to indicate what those callees are. This patch updates the call graph and lazy call graph analyses so that they consider this metadata when encountering call sites. For the call graph, it adds a new external call graph node to the graph for each unique !callees metadata node. A call graph edge connects an indirect call site with the external node associated with the !callees metadata that is attached to it. And there is an edge from this external node to each of the callees indicated by the metadata. Similarly, for the lazy call graph, the patch adds Ref edges from a caller to the possible callees indicated by the metadata. The primary purpose of the patch is to facilitate iterating over the functions in a module such that all of the callees indicated by a given !callees metadata node will be visited prior to the functions containing call sites annotated by that node. This property is required by optimizations performing a bottom-up traversal of the SCC DAG. For example, the inliner can be made to inline through an indirect call. If the call site is annotated with !callees metadata, this patch ensures that the inliner will have visited all of the callees prior to the caller, allowing it to reliably compute the cost of inlining one or more of the potential callees. Original patch by @mssimpso. I've made some small changes to get it to apply, build, and pass tests on the top of tree, as well as some minor tweaks to formatting and functionality. Subscribers: mehdi_amini, hiraditya, llvm-commits, mssimpso Tags: #llvm Differential Revision: https://reviews.llvm.org/D39339 llvm-svn: 369025
* Remove alignment argument from memcpy/memmove/memset in favour of alignment ↵Daniel Neilson2018-01-191-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
* [CG] Add a new pass manager printer pass for the old call graph andChandler Carruth2016-03-101-0/+1
| | | | | | | | | | | | | | | | | actually finish wiring up the old call graph. There were bugs in the old call graph that hadn't been caught because it wasn't being tested. It wasn't being tested because it wasn't in the pipeline system and we didn't have a printing pass to run in tests. This fixes all of that. As for why I'm still keeping the old call graph alive its so that I can port GlobalsAA to the new pass manager with out forking it to work with the lazy call graph. That's clearly the right eventual design, but it seems pragmatic to defer that until its necessary. The old call graph works just fine for GlobalsAA. llvm-svn: 263104
* [gc.statepoint] Change gc.statepoint intrinsic's return type to token type ↵Chen Li2015-12-261-2/+2
| | | | | | | | | | | | | | instead of i32 type Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint. Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob Subscribers: reames, mjacob, sanjoy, llvm-commits Differential Revision: http://reviews.llvm.org/D15662 llvm-svn: 256443
* Revert "Change memcpy/memset/memmove to have dest and source alignments."Pete Cooper2015-11-191-2/+2
| | | | | | | | | | This reverts commit r253511. This likely broke the bots in http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202 http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787 llvm-svn: 253543
* Change memcpy/memset/memmove to have dest and source alignments.Pete Cooper2015-11-181-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html These intrinsics currently have an explicit alignment argument which is required to be a constant integer. It represents the alignment of the source and dest, and so must be the minimum of those. This change allows source and dest to each have their own alignments by using the alignment attribute on their arguments. The alignment argument itself is removed. There are a few places in the code for which the code needs to be checked by an expert as to whether using only src/dest alignment is safe. For those places, they currently take the minimum of src/dest alignments which matches the current behaviour. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false) will now read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false) For out of tree owners, I was able to strip alignment from calls using sed by replacing: (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\) with: $1i1 false) and similarly for memmove and memcpy. I then added back in alignment to test cases which needed it. A similar commit will be made to clang which actually has many differences in alignment as now IRBuilder can generate different source/dest alignments on calls. In IRBuilder itself, a new argument was added. Instead of calling: CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false) you now call CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false) There is a temporary class (IntegerAlignment) which takes the source alignment and rejects implicit conversion from bool. This is to prevent isVolatile here from passing its default parameter to the source alignment. Note, changes in future can now be made to codegen. I didn't change anything here, but this change should enable better memcpy code sequences. Reviewed by Hal Finkel. llvm-svn: 253511
* [CallGraph] Given -print-callgraph a stable printing order.Sanjoy Das2015-06-191-3/+3
| | | | | | | | | | | | | | | | Summary: Since FunctionMap has llvm::Function pointers as keys, the order in which the traversal happens can differ from run to run, causing spurious FileCheck failures. Have CallGraph::print sort the CallGraphNodes by name before printing them. Reviewers: bogner, chandlerc Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D10575 llvm-svn: 240191
* [CallGraph] Teach the CallGraph about non-leaf intrinsics.Sanjoy Das2015-06-181-0/+32
| | | | | | | | | | | | | | | | | | | | Summary: Currently intrinsics don't affect the creation of the call graph. This is not accurate with respect to statepoint and patchpoint intrinsics -- these do call (or invoke) LLVM level functions. This change fixes this inconsistency by adding a call to the external node for call sites that call these non-leaf intrinsics. This coupled with the fact that these intrinsics also escape the function pointer they call gives us a conservatively correct call graph. Reviewers: reames, chandlerc, atrick, pgavlin Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D10526 llvm-svn: 240039
* Move the personality function from LandingPadInst to FunctionDavid Majnemer2015-06-171-2/+2
| | | | | | | | | | | | | | | | | | | The personality routine currently lives in the LandingPadInst. This isn't desirable because: - All LandingPadInsts in the same function must have the same personality routine. This means that each LandingPadInst beyond the first has an operand which produces no additional information. - There is ongoing work to introduce EH IR constructs other than LandingPadInst. Moving the personality routine off of any one particular Instruction and onto the parent function seems a lot better than have N different places a personality function can sneak onto an exceptional function. Differential Revision: http://reviews.llvm.org/D10429 llvm-svn: 239940
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-04-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | the call instruction See r230786 and r230794 for similar changes to gep and load respectively. Call is a bit different because it often doesn't have a single explicit type - usually the type is deduced from the arguments, and just the return type is explicit. In those cases there's no need to change the IR. When that's not the case, the IR usually contains the pointer type of the first operand - but since typed pointers are going away, that representation is insufficient so I'm just stripping the "pointerness" of the explicit type away. This does make the IR a bit weird - it /sort of/ reads like the type of the first operand: "call void () %x(" but %x is actually of type "void ()*" and will eventually be just of type "ptr". But this seems not too bad and I don't think it would benefit from repeating the type ("void (), void () * %x(" and then eventually "void (), ptr %x(") as has been done with gep and load. This also has a side benefit: since the explicit type is no longer a pointer, there's no ambiguity between an explicit type and a function that returns a function pointer. Previously this case needed an explicit type (eg: a function returning a void() function was written as "call void () () * @x(" rather than "call void () * @x(" because of the ambiguity between a function returning a pointer to a void() function and a function returning void). No ambiguity means even function pointer return types can just be written alone, without writing the whole function's type. This leaves /only/ the varargs case where the explicit type is required. Given the special type syntax in call instructions, the regex-fu used for migration was a bit more involved in its own unique way (as every one of these is) so here it is. Use it in conjunction with the apply.sh script and associated find/xargs commands I've provided in rr230786 to migrate your out of tree tests. Do let me know if any of this doesn't cover your cases & we can iterate on a more general script/regexes to help others with out of tree tests. About 9 test cases couldn't be automatically migrated - half of those were functions returning function pointers, where I just had to manually delete the function argument types now that we didn't need an explicit function type there. The other half were typedefs of function types used in calls - just had to manually drop the * from those. import fileinput import sys import re pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)') addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$") func_end = re.compile("(?:void.*|\)\s*)\*$") def conv(match, line): if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)): return line return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():] for line in sys.stdin: sys.stdout.write(conv(re.search(pat, line), line)) llvm-svn: 235145
* [tests] Cleanup initialization of test suffixes.Daniel Dunbar2013-08-161-1/+0
| | | | | | | | | | | | | | | | | - Instead of setting the suffixes in a bunch of places, just set one master list in the top-level config. We now only modify the suffix list in a few suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py). - Aside from removing the need for a bunch of lit.local.cfg files, this enables 4 tests that were inadvertently being skipped (one in Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been XFAILED). - This commit also fixes a bunch of config files to use config.root instead of older copy-pasted code. llvm-svn: 188513
* Add newlines at end of test files, no functionality changeStephen Lin2013-07-131-1/+1
| | | | llvm-svn: 186263
* Now that invoke of an intrinsic is possible (for the llvm.do.nothing intrinsic)Duncan Sands2012-09-261-0/+13
| | | | | | | teach the callgraph logic to not create callgraph edges to intrinsics for invoke instructions; it already skips this for call instructions. Fixes PR13903. llvm-svn: 164707
* Convert the uses of '|&' to use '2>&1 |' instead, which works on oldChandler Carruth2012-07-023-3/+3
| | | | | | | | | | versions of Bash. In addition, I can back out the change to the lit built-in shell test runner to support this. This should fix the majority of fallout on Darwin, but I suspect there will be a few straggling issues. llvm-svn: 159544
* FileCheck-ize these tests.Bill Wendling2012-04-242-3/+9
| | | | llvm-svn: 155433
* Replace all instances of dg.exp file with lit.local.cfg, since all tests are ↵Eli Bendersky2012-02-162-3/+1
| | | | | | | | run with LIT now and now Dejagnu. dg.exp is no longer needed. Patch reviewed by Daniel Dunbar. It will be followed by additional cleanup patches. llvm-svn: 150664
* Test case for r132797.John McCall2011-06-141-0/+13
| | | | llvm-svn: 132962
* fix some failures my callgraph dump format change broke.Chris Lattner2010-04-232-3/+2
| | | | llvm-svn: 102197
* Change tests from "opt %s" to "opt < %s" so that opt doesn't see theDan Gohman2009-09-112-2/+2
| | | | | | | | input filename so that opt doesn't print the input filename in the output so that grep lines in the tests don't unintentionally match strings in the input filename. llvm-svn: 81537
* Change these tests to feed the assembly files to opt directly, insteadDan Gohman2009-09-082-2/+2
| | | | | | of using llvm-as, now that opt supports this. llvm-svn: 81226
* Rationalize the names of passes that print information:Duncan Sands2008-09-232-2/+4
| | | | | | | | | | | | | | | | | -callgraph => print-callgraph -callscc => print-callgraph-sccs -cfgscc => print-cfg-sccs -externalfnconstants => print-externalfnconstants -print => print-function -print-alias-sets (no change) -print-callgraph => dot-callgraph -print-cfg => dot-cfg -print-cfg-only => dot-cfg-only -print-dom-info (no change) -printm => print-module -printusedtypes => print-used-types llvm-svn: 56487
* Teach -callgraph to always print the callgraph (as theDuncan Sands2008-09-192-2/+2
| | | | | | | | description says it does), not just when -analyze is used as well. This means printing to stderr, so adjust some tests. llvm-svn: 56337
* Correct callgraph construction. It has two problems:Duncan Sands2008-09-093-0/+22
(1) code left over from the days of ConstantPointerRef: if a use of a function is a GlobalValue then that is not considered a reason to add an edge from the external node, even though the use may be as an initializer for an externally visible global! There might be some point to this behaviour when the use is by an alias (though the code predated aliases by some centuries), but I think PR2782 is a better way of handling that. (2) If function F calls function G, and also G is a parameter to the call, then an F->G edge is not added to the callgraph. While this doesn't seem to matter much, adding such an edge makes the callgraph more regular. In addition, the new code should be faster as well as simpler. llvm-svn: 55987
OpenPOWER on IntegriCloud