summaryrefslogtreecommitdiffstats
path: root/llvm/test/Analysis/BlockFrequencyInfo/basic.ll
Commit message (Collapse)AuthorAgeFilesLines
* [BFI] Add new LazyBFI analysis passAdam Nemet2016-07-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | Summary: This is necessary for D21771. In order to add the hotness attribute to optimization remarks we need BFI to be available in all passes that emit optimization remarks. However we don't want to pay for computing BFI unless the hotness attribute is requested. This is achieved by making BFI lazy at the very high-level through a new analysis pass -- BFI is not calculated unless requested. I am adding a test to check the laziness under D21771 where the first user of the analysis is added. Reviewers: hfinkel, dexonsmith, davidxl Subscribers: davidxl, dexonsmith, llvm-commits Differential Revision: http://reviews.llvm.org/D22141 llvm-svn: 275250
* [PM] port Branch Frequency Analaysis pass to new PMXinliang David Li2016-05-051-0/+1
| | | | llvm-svn: 268687
* Use fixed-point representation for BranchProbability.Cong Hou2015-09-251-3/+3
| | | | | | | | | | | | | | | | | | | | BranchProbability now is represented by its numerator and denominator in uint32_t type. This patch changes this representation into a fixed point that is represented by the numerator in uint32_t type and a constant denominator 1<<31. This is quite similar to the representation of BlockMass in BlockFrequencyInfoImpl.h. There are several pros and cons of this change: Pros: 1. It uses only a half space of the current one. 2. Some operations are much faster like plus, subtraction, comparison, and scaling by an integer. Cons: 1. Constructing a probability using arbitrary numerator and denominator needs additional calculations. 2. It is a little less precise than before as we use a fixed denominator. For example, 1 - 1/3 may not be exactly identical to 1 / 3 (this will lead to many BranchProbability unit test failures). This should not matter when we only use it for branch probability. If we use it like a rational value for some precise calculations we may need another construct like ValueRatio. One important reason for this change is that we propose to store branch probabilities instead of edge weights in MachineBasicBlock. We also want clients to use probability instead of weight when adding successors to a MBB. The current BranchProbability has more space which may be a concern. Differential revision: http://reviews.llvm.org/D12603 llvm-svn: 248633
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | load instruction Essentially the same as the GEP change in r230786. A similar migration script can be used to update test cases, though a few more test case improvements/changes were required this time around: (r229269-r229278) import fileinput import sys import re pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)") for line in sys.stdin: sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line)) Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7649 llvm-svn: 230794
* [opaque pointer type] Add textual IR support for explicit type parameter to ↵David Blaikie2015-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
* IR: Make metadata typeless in assemblyDuncan P. N. Exon Smith2014-12-151-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-211-24/+31
| | | | | | | | | This reverts commit r206707, reapplying r206704. The preceding commit to CalcSpillWeights should have sorted out the failing buildbots. <rdar://problem/14292693> llvm-svn: 206766
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-191-31/+24
| | | | | | This reverts commit r206704, as expected. llvm-svn: 206707
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-191-24/+31
| | | | | | | | | | | | | | | | | | | | | This reverts commit r206677, reapplying my BlockFrequencyInfo rewrite. I've done a careful audit, added some asserts, and fixed a couple of bugs (unfortunately, they were in unlikely code paths). There's a small chance that this will appease the failing bots [1][2]. (If so, great!) If not, I have a follow-up commit ready that will temporarily add -debug-only=block-freq to the two failing tests, allowing me to compare the code path between what the failing bots and what my machines (and the rest of the bots) are doing. Once I've triggered those builds, I'll revert both commits so the bots go green again. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 [2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445 <rdar://problem/14292693> llvm-svn: 206704
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl" (#2)Duncan P. N. Exon Smith2014-04-191-31/+24
| | | | | | | | | | | This reverts commit r206666, as planned. Still stumped on why the bots are failing. Sanitizer bots haven't turned anything up. If anyone can help me debug either of the failures (referenced in r206666) I'll owe them a beer. (In the meantime, I'll be auditing my patch for undefined behaviour.) llvm-svn: 206677
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl" (#2)Duncan P. N. Exon Smith2014-04-181-24/+31
| | | | | | | | | | | | | | | | | | | This reverts commit r206628, reapplying r206622 (and r206626). Two tests are failing only on buildbots [1][2]: i.e., I can't reproduce on Darwin, and Chandler can't reproduce on Linux. Asan and valgrind don't tell us anything, but we're hoping the msan bot will catch it. So, I'm applying this again to get more feedback from the bots. I'll leave it in long enough to trigger builds in at least the sanitizer buildbots (it was failing for reasons unrelated to my commit last time it was in), and hopefully a few others.... and then I expect to revert a third time. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 [2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445 llvm-svn: 206666
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl" (#2)Duncan P. N. Exon Smith2014-04-181-31/+24
| | | | | | | | | This reverts commit r206622 and the MSVC fixup in r206626. Apparently the remotely failing tests are still failing, despite my attempt to fix the nondeterminism in r206621. llvm-svn: 206628
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-181-24/+31
| | | | | | | | | | | | | | This reverts commit r206556, effectively reapplying commit r206548 and its fixups in r206549 and r206550. In an intervening commit I've added target triples to the tests that were failing remotely [1] (but passing locally). I'm hoping the mystery is solved? I'll revert this again if the tests are still failing remotely. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 llvm-svn: 206622
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-181-31/+24
| | | | | | | | | | | This reverts commits r206548, r206549 and r206549. There are some unit tests failing that aren't failing locally [1], so reverting until I have time to investigate. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 llvm-svn: 206556
* blockfreq: Rewrite BlockFrequencyInfoImplDuncan P. N. Exon Smith2014-04-181-24/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rewrite the shared implementation of BlockFrequencyInfo and MachineBlockFrequencyInfo entirely. The old implementation had a fundamental flaw: precision losses from nested loops (or very wide branches) compounded past loop exits (and convergence points). The @nested_loops testcase at the end of test/Analysis/BlockFrequencyAnalysis/basic.ll is motivating. This function has three nested loops, with branch weights in the loop headers of 1:4000 (exit:continue). The old analysis gives non-sensical results: Printing analysis 'Block Frequency Analysis' for function 'nested_loops': ---- Block Freqs ---- entry = 1.0 for.cond1.preheader = 1.00103 for.cond4.preheader = 5.5222 for.body6 = 18095.19995 for.inc8 = 4.52264 for.inc11 = 0.00109 for.end13 = 0.0 The new analysis gives correct results: Printing analysis 'Block Frequency Analysis' for function 'nested_loops': block-frequency-info: nested_loops - entry: float = 1.0, int = 8 - for.cond1.preheader: float = 4001.0, int = 32007 - for.cond4.preheader: float = 16008001.0, int = 128064007 - for.body6: float = 64048012001.0, int = 512384096007 - for.inc8: float = 16008001.0, int = 128064007 - for.inc11: float = 4001.0, int = 32007 - for.end13: float = 1.0, int = 8 Most importantly, the frequency leaving each loop matches the frequency entering it. The new algorithm leverages BlockMass and PositiveFloat to maintain precision, separates "probability mass distribution" from "loop scaling", and uses dithering to eliminate probability mass loss. I have unit tests for these types out of tree, but it was decided in the review to make the classes private to BlockFrequencyInfoImpl, and try to shrink them (or remove them entirely) in follow-up commits. The new algorithm should generally have a complexity advantage over the old. The previous algorithm was quadratic in the worst case. The new algorithm is still worst-case quadratic in the presence of irreducible control flow, but it's linear without it. The key difference between the old algorithm and the new is that control flow within a loop is evaluated separately from control flow outside, limiting propagation of precision problems and allowing loop scale to be calculated independently of mass distribution. Loops are visited bottom-up, their loop scales are calculated, and they are replaced by pseudo-nodes. Mass is then distributed through the function, which is now a DAG. Finally, loops are revisited top-down to multiply through the loop scales and the masses distributed to pseudo nodes. There are some remaining flaws. - Irreducible control flow isn't modelled correctly. LoopInfo and MachineLoopInfo ignore irreducible edges, so this algorithm will fail to scale accordingly. There's a note in the class documentation about how to get closer. See also the comments in test/Analysis/BlockFrequencyInfo/irreducible.ll. - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting the 64-bit integer precision used downstream. - The "bias" calculation proposed on llvmdev is *not* incorporated here. This will be added in a follow-up commit, once comments from this review have been handled. llvm-svn: 206548
* Minimize precision loss when computing cyclic probabilities.Jakob Stoklund Olesen2013-06-281-0/+42
| | | | | | | Allow block frequencies to exceed 32 bits by using the new BlockFrequency division function. llvm-svn: 185236
* Print block frequencies in decimal form.Jakob Stoklund Olesen2013-06-251-16/+16
| | | | | | | | | This is easier to read than the internal fixed-point representation. If anybody knows the correct algorithm for converting fixed-point numbers to base 10, feel free to fix it. llvm-svn: 184881
* BlockFrequency: Bump up the entry frequency a bit.Benjamin Kramer2013-06-251-16/+16
| | | | | | | This is a band-aid to fix the most severe regressions we're seeing from basing spill decisions on block frequencies, until we have a better solution. llvm-svn: 184835
* Generalize the reading of probability metadata to work for both branchesChandler Carruth2011-10-191-0/+43
| | | | | | | | | and switches, with arbitrary numbers of successors. Still optimized for the common case of 2 successors for a conditional branch. Add a test case for switch metadata showing up in the BlockFrequencyInfo pass. llvm-svn: 142493
* Teach the BranchProbabilityInfo analysis pass to read any metadataChandler Carruth2011-10-191-0/+25
| | | | | | | | | | | encoding of probabilities. In the absense of metadata, it continues to fall back on static heuristics. This allows __builtin_expect, after lowering through llvm.expect a branch instruction's metadata, to actually enter the branch probability model. This is one component of resolving PR2577. llvm-svn: 142492
* Add pass printing support to BlockFrequencyInfo pass. The implementationChandler Carruth2011-10-191-0/+24
layer already had support for printing the results of this analysis, but the wiring was missing. Now that printing the analysis works, actually bring some of this analysis, and the BranchProbabilityInfo analysis that it wraps, under test! I'm planning on fixing some bugs and doing other work here, so having a nice place to add regression tests and a way to observe the results is really useful. llvm-svn: 142491
OpenPOWER on IntegriCloud