| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
| |
Custom lower this to a target instruction with the merge operands. I
think it might be better to directly select this and emit a
REG_SEQUENCE, but this would be more work since it would require
splitting the tablegen patterns for these cases from the other
atomics.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
resource descriptor
Summary:
In loadSRsrcFromVGPR, if MBB is the same as Succ, Remiander is not the immediate dominator of Succ.
Reviewer:
arsenm
Differential Revision:
https://reviews.llvm.org/D69358
|
| |
|
|
|
| |
Reverting commit b85b4e5a6f8579c137fecb59a4d75d7bfb111f79 due to some
buildbot failures/ out of memory errors.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If there are a GUID collision between two globals checking the
summarylist from the import index to make assumption can be dangerous.
Do not assume that a GlobalValue that has a GlobalVarSummary
actually is a GlobalVariable as it can be another GlobalValue with
the same GUID that the summary is connected to.
Patch by Joel Klinghed (the_jk@opera.com)
Reviewers: evgeny777, tejohnson
Reviewed By: tejohnson
Subscribers: tejohnson, dblaikie, MaskRay, mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67322
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: nemanjai, hiraditya, kbarton, MaskRay, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69307
|
| |
|
|
| |
Differential Revision: https://reviews.llvm.org/D69413
|
| |
|
|
|
|
| |
(when Src2 is required)
Differential revision: https://reviews.llvm.org/D69430
|
| |
|
|
| |
Without this, we can create a PSADBW node that isn't legal.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
zext (ctpop X) --> ctpop (zext X)
This is a prerequisite step for canonicalizing in the other direction (narrow the popcount) in IR - PR43688:
https://bugs.llvm.org/show_bug.cgi?id=43688
I'm not sure if any other targets are affected, but I found a missing fold for PPC, so added tests based on that.
The reason we widen all the way to 64-bit in these tests is because the initial DAG looks something like this:
t5: i8 = ctpop t4
t6: i32 = zero_extend t5 <-- created based on IR, but unused node?
t7: i64 = zero_extend t5
Differential Revision: https://reviews.llvm.org/D69127
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, rovka, dstuttard, tpr, t-tye, hiraditya, volkan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69347
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add instruction marker to MachineInstr ExtraInfo. This does almost the
same thing as Pre/PostInstrSymbols, except that it doesn't create a label until
printing instructions. This allows for labels to be put around instructions that
are deleted/duplicated somewhere.
Also undo the workaround in r375137.
Reviewers: rnk
Subscribers: MatzeB, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69136
|
| |
|
|
| |
(check commit access)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
There are `*_ov()` functions already, so at least for consistency it may be good to also have saturating variants.
These may or may not be needed for `ConstantRange`'s `shlWithNoWrap()`
Reviewers: spatel, nikic
Reviewed By: nikic
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69398
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
There are `*_ov()` functions already, so at least for consistency it may be good to also have saturating variants.
These may or may not be needed for `ConstantRange`'s `mulWithNoWrap()`
Reviewers: spatel, nikic
Reviewed By: nikic
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69397
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Ternary expression checks for ISD::ADD instead of ISD::UADDO inside DAGTypeLegalizer::ExpandIntRes_UADDSUBO.
This means the ternary expression will evaluate to ISD::SUBCARRY for both ISD::UADDO and ISD::USUBO nodes.
Targets are likely to implement both, so impact will be very limited in practice.
Reviewers: bogner, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68123
|
| |
|
|
|
|
|
|
|
| |
Complete fp16 support by ensuring that load extension / truncate store
operations are properly expanded.
Reviewers: asb, lenary
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D69246
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
selectImpl is able to select G_FSQRT when we set bank for vector
operands to fprb. Add detailed tests.
Note: G_FSQRT is generated from llvm-ir intrinsics llvm.sqrt.*,
and at the moment MIPS is not able to generate this intrinsic for
vector type (some targets generate vector llvm.sqrt.* from calls
to a builtin function).
__builtin_msa_fsqrt_<format> will be transformed into G_FSQRT
in legalizeIntrinsic and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69376
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SHT_NOTE is the section that consists of
namesz, descsz, type, name + padding, desc + padding data.
This patch teaches yaml2obj, obj2yaml to dump and parse them.
This patch implements the section how it is described here:
https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-18048.html
Which says: "For 64–bit objects and 32–bit objects, each entry is an array of 4-byte words in
the format of the target processor"
The official specification is different
http://www.sco.com/developers/gabi/latest/ch5.pheader.html#note_section
And says: "n 64-bit objects (files with e_ident[EI_CLASS] equal to ELFCLASS64), each entry is an array
of 8-byte words in the format of the target processor. In 32-bit objects (files with e_ident[EI_CLASS]
equal to ELFCLASS32), each entry is an array of 4-byte words in the format of the target processor"
Since LLVM uses the first, 32-bit way, this patch follows it.
Differential revision: https://reviews.llvm.org/D68983
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
renamable $x6 = ADDI8 $x1, -80 ;;; 0 is replaced with -80
renamable $x6 = ADD8 killed renamable $x6, renamable $x5
STW killed renamable $r3, 4, killed renamable $x6 :: (store 4 into %ir.14, !tbaa !2)
After PEI there is a peephole opt opportunity to combine above -80 in ADDI8 with 4 in the STW to eliminate unnecessary ADD8.
Expected result:
renamable $x6 = ADDI8 $x1, -76
STWX killed renamable $r3, renamable $x5, killed renamable $x6 :: (store 4 into %ir.6, !tbaa !2)
Reviewed by: stefanp
Differential Revision: https://reviews.llvm.org/D66329
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
| |
We were already going to all of the trouble of computing maximum constant exit counts for each loop exit, we might as well expose them through the API. The change in IndVars is mostly to demonstrate that the wired up code works, but it als very slightly strengthens the transform. The strengthened case is rather narrow though: it requires one exactly analyzeable exit, one imprecisely analyzeable exit (with the upper bound less than the precise one), and one unanalyzeable exit. I coudn't construct a reasonably stable test case.
This does increase the memory usage of the BackedgeTakenCount by a factor of 2 in the worst case.
I also noticed the loop in IndVars is O(#Exits ^ 2). This doesn't change with this patch. A future patch will cache this result inside of SCEV to avoid requering.
|
| |
|
|
| |
default to after the switch
|
| |
|
|
| |
This is a first step in figuring out a proper API for maximum (non constant) exit counts. This may evolve a bit as we get experience with the API needs; suggestions very welcome. This patch just tried to provide a framework that we can later add maximum too in a clean and obvious way.
|
| |
|
|
| |
This has become visible with the --fatal-warnings support.
|
| | |
|
| |
|
|
|
|
|
|
|
|
| |
(This time verified locally.)
It was failing with:
llvm/lib/MC/XCOFFObjectWriter.cpp:168:56: error: array must be initialized with a brace-enclosed initializer
std::array<Section *const, 2> Sections = {&Text, &BSS};
^
|
| | |
|
| |
|
|
|
| |
Clang emit warning for skipping field initialization. Add {} to fix it.
This is a patch that fixes issue introduced in https://reviews.llvm.org/D69112
|
| |
|
|
| |
NFCI.
|
| |
|
|
|
|
|
| |
This reverts commit 32ce14e55e5a99dd99c3b4fd4bd0ccaaf2948c30.
In post-commit review, Pavel pointed out that there's a simpler way to
ignore SIGPIPE in lldb that doesn't rely on llvm's handlers.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
new functions are compatible before upgrading a function call to an
intrinsic call.
Sometimes users insert calls to ARC runtime functions that are not
compatible with the corresponding intrinsic functions (for example,
'i8* @objc_storeStrong' instead of 'void @objc_storeStrong'). Don't
upgrade those calls.
rdar://problem/56447127
|
| |
|
|
|
|
|
| |
An SUnit can be neither intruction not SDNode. It is all
null if represents a nop. Fixed a crash on using SU->getInstr().
Differential Revision: https://reviews.llvm.org/D69395
|
| |
|
|
|
|
|
|
| |
It was failing with
llvm/lib/MC/XCOFFObjectWriter.cpp:168:53: error: array must be initialized with a brace-enclosed initializer
std::array<Section *const, 2> Sections{&Text, &BSS};
^
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: rampitec
Reviewed By: rampitec
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69375
|
| |
|
|
| |
Avoids warnings in Release builds. NFC.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Right now we handle each CsectGroup(ProgramCodeCsects, BSSCsects)
individually when assigning indices, writing symbol table, and
writing section raw data. However, there is already a pattern there,
and we could common up those actions for every CsectGroup. This will
make adding new CsectGroup(Read Write data, Read only data, TC/TOC,
mergeable string) easier, and less error prone.
Reviewed by: sfertile, daltenty, DiggerLin
Approved by: daltenty
Differential Revision: https://reviews.llvm.org/D69112
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The MVE VADC instruction reads and writes the carry bit at bit 29 of
the FPSCR register. The corresponding ACLE intrinsic is specified to
work with an integer in which the carry bit is stored at bit 0. So if
a user writes a code sequence in C that passes the carry from one VADC
to the next, like this,
s0 = vadcq_u32(a0, b0, &carry);
s1 = vadcq_u32(a1, b1, &carry);
then clang will generate IR for each of those operations that shifts
the carry bit up into bit 29 before the VADC, and after it, shifts it
back down and masks off all but the low bit. But in this situation
what you really wanted was two consecutive VADC instructions, so that
the second one directly reads the value left in FPSCR by the first,
without wasting several instructions on pointlessly clearing the other
flag bits in between.
This commit explains to InstCombine that the other bits of the flags
operand don't matter, and adds a test that demonstrates that all the
code between the two VADC instructions can be optimized away as a
result.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67162
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The VST2 and VST4 instructions take two or four vector registers as
input, and store part of each register to memory in an interleaved
pattern. They come in variants indicating which part of each register
they store (VST20 and VST21; VST40 to VST43 inclusive); the intention
is that issuing each of those variants in turn has the combined effect
of loading or storing the whole set of registers to a memory block of
equal size. The corresponding VLD2 and VLD4 instructions load from
memory in the same interleaved format: each one overwrites only part
of its output register set, and again, the idea is that if you use
VLD4{0,1,2,3} or VLD2{0,1} together, you end up having written to the
whole of each register.
I've implemented the stores and loads quite differently. The loads
were easiest to implement as a single intrinsic that expands to all
four VLD4x instructions or both VLD2x, delivering four complete output
registers. (Implementing each individual load as a separate
instruction taking four input registers to partially overwrite is
possible in theory, but pointless, and when I tried it, I found it
would need extra work to get the register allocation not to be
horrible.) Since that intrinsic delivers multiple outputs, it has to
be instruction-selected in custom C++.
But the store instructions are easier to model individually, because
they don't overwrite any register at all and you can write a DAG Isel
pattern in Tablegen for each one.
Hence, my new intrinsic `int_arm_mve_vld4q` expands to four load
instructions, delivers four full output vectors, and is handled by C++
code, whereas `int_arm_mve_vst4q` expands to just one store
instruction, takes four input vectors and a constant indicating which
lanes to store, and is handled entirely in Tablegen. (And similarly
for vld2q/vst2q.) This is asymmetric, but it was the easiest way to do
each one.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68700
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds some initial example IR intrinsics for MVE instructions that
deliver multiple output values, and hence, have to be instruction-
selected by custom C++ code instead of Tablegen patterns.
I've added the writeback gather load instructions (taking a vector of
base addresses and a single common offset, returning a vector of
loaded values and an updated vector of base addresses); one example
from the long shift family (taking and returning a 64-bit value in two
GPRs); and the VADC instruction (which propagates a carry bit from
each vector-lane addition to the next, taking an input carry flag in
FPSCR and outputting the final one in FPSCR as well).
To support the VPT-predicated forms of these instructions, I've
written some helper functions to add the cluster of MVE predicate
operands to the end of a MachineInstr. `AddMVEPredicateToOps` is used
when the instruction actually is predicated (so it takes a predicate
mask argument), and `AddEmptyMVEPredicateToOps` is for when the
instruction is unpredicated (so it fills in $noreg for the mask). Each
one comes in a form suitable for `vpred_n`, and one for `vpred_r`
which takes the extra 'inactive' parameter.
For VADC, the representation of the carry flag in the IR intrinsic is
a word intended to be moved directly to and from `FPSCR_nzcvqc`, i.e.
with the carry flag in bit 29 of the word. (The user-facing ACLE
intrinsic will want it to be in bit 0, but I'll do that on the clang
side.)
Reviewers: dmgreen, miyuki, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68699
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit, together with the next few, will add a representative
sample of the kind of IR intrinsics that we'll need in order to
implement the user-facing ACLE intrinsics for MVE. Supporting all of
them will take more work; the intention of this initial series of
commits is to implement an intrinsic or two from lots of different
categories, as examples and proofs of concept.
This initial commit introduces a small number of IR intrinsics for
instructions simple enough that they can use Tablegen ISel patterns:
the predicated versions of the VADD and VSUB instructions (both
integer and FP), VMIN and VMAX, and the float->half VCVT instruction
(predicated and unpredicated).
When using VPT-predicated instructions in automatic code generation,
it will be convenient to specify the predicate value as a vector of
the appropriate number of i1. To make it easy to specify all sizes of
an instruction in one go and give each one the matching predicate
vector type, I've added a system of Tablegen informational records
describing MVE's vector types: each one gives the underlying LLVM IR
ValueType (which may not be the same if the MVE vector is of
explicitly signed or unsigned integers) and an appropriate vNi1 to use
as the predicate vector.
(Also, those info records include the usual encoding for the types, so
that as we add associations between each instruction encoding and one
of the new `MVEVectorVTInfo` records, we can remove some of the
existing template parameters and replace them with references to the
vector type info's fields.)
The user-facing ACLE intrinsics will receive a predicate mask as a
16-bit integer, so I've also provided a pair of intrinsics i2v and
v2i, to convert between an integer and a vector of i1 by just changing
the register class.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67158
|
| |
|
|
|
|
|
|
|
|
| |
Reviewers: rampitec, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69355
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
selectImpl is able to select G_FABS when we set bank for vector
operands to fprb. Add detailed tests.
Note: G_FABS is generated from llvm-ir intrinsics llvm.fabs.*,
and at the moment MIPS is not able to generate this intrinsic for
vector type (some targets generate vector llvm.fabs.* from calls
to a builtin function).
We can handle fabs using __builtin_msa_fmax_a_<format> and passing
same vector as both arguments. __builtin_msa_fmax_a_<format> will
be directly selected into FMAX_A_<format> in legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D69346
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
| |
Select vector G_FADD, G_FSUB, G_FMUL and G_FDIV for MIPS32 with MSA. We
have to set bank for vector operands to fprb and selectImpl will do the
rest. __builtin_msa_fadd_<format>, __builtin_msa_fsub_<format>,
__builtin_msa_fmul_<format> and __builtin_msa_fdiv_<format> will be
transformed into G_FADD, G_FSUB, G_FMUL and G_FDIV in legalizeIntrinsic
respectively and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69340
|
| |
|
|
|
|
|
|
|
|
|
| |
Select vector G_SDIV, G_SREM, G_UDIV and G_UREM for MIPS32 with MSA. We
have to set bank for vector operands to fprb and selectImpl will do the
rest. __builtin_msa_div_s_<format>, __builtin_msa_mod_s_<format>,
__builtin_msa_div_u_<format> and __builtin_msa_mod_u_<format> will be
transformed into G_SDIV, G_SREM, G_UDIV and G_UREM in legalizeIntrinsic
respectively and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69333
|
| |
|
|
|
|
|
|
| |
Potentially sgpr to sgpr copy should also be possible.
That is however trickier because we may end up with a
wrong register class at use because of xm0/xexec permutations.
Differential Revision: https://reviews.llvm.org/D69280
|
| |
|
|
| |
Testing git push access.
|