| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This is generally more readable due to the way the assembler aliases
work.
(This causes a lot of test changes, but it's not really as scary as it
looks at first glance; it's just mechanically changing a bunch of checks
for orr to check for mov instead.)
Differential Revision: https://reviews.llvm.org/D59720
llvm-svn: 356954
|
| |
|
|
|
|
|
|
| |
These were defaulting to true, but they are just wrappers around bit
operations. This avoids regressions in the exec mask optimization
passes in a future commit.
llvm-svn: 356952
|
| |
|
|
|
|
|
|
| |
This reverts commit 312ab05887d0e2caa29aaf843cefe39379a98d36.
My commit broke the build; I will revert and find out what happened.
llvm-svn: 356951
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Add a binding to Function::lookupIntrinsicID so clients don't have to go searching the ID table themselves.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59697
llvm-svn: 356948
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D59517
llvm-svn: 356946
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Motivation: In previous dwarf versions, file name indexes started from 1, and
the primary source file was not explicit. Dwarf 5 standard (6.2.4) prescribes
the primary source file to be explicitly given an entry with an index number 0.
The current implementation honors the specification by just duplicating the
main source file, once with index number 0, and later maybe with another
index number. While this is compliant with the letter of the standard, the
duplication causes problems for consumers of this information such as lldb.
(Some files are duplicated, where only some of them have a line table although
all refer to the same file)
With this change, dwarf 5 debug line section files always start from 0, and
the zeroth entry is not duplicated whenever possible. This requires different
handling of dwarf 4 and dwarf 5 during generation (e.g. when a function returns
an index zero for a file name, it signals an error in dwarf 4, but not in dwarf 5)
However, I think the minor complication is worth it, because it enables all
consumers (lldb, gdb, dwarfdump, objdump, and so on) to treat all files in the
file name list homogenously.
Reviewers: dblaikie, probinson, aprantl, espindola
Reviewed By: probinson
Subscribers: emaste, jvesely, nhaehnle, aprantl, javed.absar, arichardson, hiraditya, MaskRay, rupprecht, jdoerfert, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D59515
llvm-svn: 356941
|
| |
|
|
|
|
|
|
|
|
| |
reorderInputsAccordingToOpcode
As discussed on D59738, this generalizes reorderInputsAccordingToOpcode to handle multiple + non-commutative instructions so we can get rid of reorderAltShuffleOperands and make use of the extra canonicalizations that reorderInputsAccordingToOpcode brings.
Differential Revision: https://reviews.llvm.org/D59784
llvm-svn: 356939
|
| |
|
|
|
|
|
|
|
|
| |
First half of PR40800, this patch adds DAG undef handling to icmp instructions to match the behaviour in llvm::ConstantFoldCompareInstruction and SimplifyICmpInst, this permits constant folding of vector comparisons where some elements had been reduced to UNDEF (by SimplifyDemandedVectorElts etc.).
This involved a lot of tweaking to reduced tests as bugpoint loves to reduce icmp arguments to undef........
Differential Revision: https://reviews.llvm.org/D59363
llvm-svn: 356938
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In r355512 CGP was changed to build the DominatorTree only once per
function traversal, to avoid repeatedly building it each time it was
accessed. This solved one compile time issue but introduced another. In
the second case, we now were building the DT unnecessarily many times
when we performed many function traversals (i.e. more than once per
function when running CGP because of changes made each time).
Change to saving the DT in the CodeGenPrepare object, and building it
lazily when needed. It is reset whenever we need to rebuild it.
The case that exposed the issue there are 617 functions, and we walk
them (i.e. execute the "while (MadeChange)" loop in runOnFunction) a
total of 12083 times (so previously we were building the DT 12083
times). With this patch we only build the DT 844 times (average of 1.37
times per function). We dropped the total time to compile this file from
538.11s without this patch to 339.63s with it.
There is still an issue as CGP is taking much longer than all other
passes even with this patch, and before a recent compiler release cut at
r355392 the total time to this compile was only 97 sec with a huge
reduction in CGP time. I suspect that one of the other recent changes to
CGP led to iterating each function many more times on average, but I
need to do some more investigation.
Reviewers: spatel
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59696
llvm-svn: 356937
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D54978
llvm-svn: 356929
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I think this is correct, but may not necessarily be the correct fix
for the assertion I'm really trying to solve. If a scheduling region
was found that only has dbg_value instructions, the RegPressure
tracker would end up in an inconsistent state because it would skip
over any debug instructions and point to an instruction outside of the
scheduling region. It may still be possible for this to happen if
there are some real schedulable instructions between dbg_values, but I
haven't managed to break this.
The testcase is extremely sensitive and I'm not sure how to make it
more resistent to future scheduler changes that would avoid stressing
this situation.
llvm-svn: 356926
|
| |
|
|
|
|
| |
This seems to already be done, but wasn't marked.
llvm-svn: 356922
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
canonicalization
Remove attempts to commute non-Instructions to the LHS - the codegen changes appear to rely on chance more than anything else and also have a tendency to fight existing instcombine canonicalization which moves constants to the RHS of commutable binary ops.
This is prep work towards:
(a) reusing reorderInputsAccordingToOpcode for alt-shuffles and removing the similar reorderAltShuffleOperands
(b) improving reordering to optimized cases with commutable and non-commutable instructions to still find splat/consecutive ops.
Differential Revision: https://reviews.llvm.org/D59738
llvm-svn: 356913
|
| |
|
|
|
|
| |
functions should begin with lower case letters. NFC.
llvm-svn: 356901
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Following r354972 the Intel JIT Listener would not report line table
information because the section indices did not match. There was
a similar issue with the PerfJitEventListener. This change performs
the section index lookup when building the object address used to
query the line table information.
Differential Revision: https://reviews.llvm.org/D59490
llvm-svn: 356895
|
| |
|
|
|
|
|
|
|
| |
Move selectCopy into MipsInstructionSelector class.
Select copy for arguments from FPRBRegBank for MIPS32.
Differential Revision: https://reviews.llvm.org/D59644
llvm-svn: 356886
|
| |
|
|
|
|
|
|
|
| |
Add floating point register bank for MIPS32.
Implement getRegBankFromRegClass for float register classes.
Differential Revision: https://reviews.llvm.org/D59643
llvm-svn: 356883
|
| |
|
|
|
|
|
|
|
|
| |
Lower float and double arguments in registers for MIPS32.
When float/double argument is passed through gpr registers
select appropriate move instruction.
Differential Revision: https://reviews.llvm.org/D59642
llvm-svn: 356882
|
| |
|
|
| |
llvm-svn: 356875
|
| |
|
|
|
|
|
|
|
|
| |
We currently use only VLDR/VSTR for all 64-bit loads/stores, so the
memory operands must be word-aligned. Mark aligned operations as legal
and narrow non-aligned ones to 32 bits.
While we're here, also mark non-power-of-2 loads/stores as unsupported.
llvm-svn: 356872
|
| |
|
|
|
|
|
|
|
| |
include a VT for a EFLAGS result.
This makes the nodes consistent with how they would be emitted from the isel
table.
llvm-svn: 356870
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
operation VT for the target constant.
Normally when the nodes we use here(AND32ri8 for example) are selected their
immediates are just converted from ConstantSDNode to TargetConstantSDNode
without changing VT from the original operation VT. So we should still be
emitting them with the operation VT.
Theoretically this could expose more accurate opportunities for CSE.
llvm-svn: 356869
|
| |
|
|
|
|
|
|
| |
We were using this to create an AND32ri8 node from a 64-bit and, but that node
normally still uses a 32-bit immediate. So we should just truncate the existing
immediate to i32. We already verified it has the same value in bits 31:7.
llvm-svn: 356868
|
| |
|
|
| |
llvm-svn: 356867
|
| |
|
|
|
|
|
|
| |
immediate into instructions under optsize."
Looking back over how the one use optimization works, I don't think this is the right way to fix this.
llvm-svn: 356866
|
| |
|
|
|
|
|
|
| |
Enable SSE41 ZERO_EXTEND_VECTOR_INREG shuffle combines - for the PMOVZX(PSHUFD(V)) -> UNPCKH(V,0) pattern we reduce the shuffles (port5-bottleneck on Intel) at the expense of creating a zero (pxor v,v) and an extra register move - which is a good trade off as these are pretty cheap and in most cases it doesn't increase register pressure.
This also exposed a missed opportunity to use combine to ZERO_EXTEND_VECTOR_INREG with folded loads - even if we're in the float domain.
llvm-svn: 356864
|
| |
|
|
|
|
|
|
| |
Class `RegionInfo` was `SortUnitInfo` before, so the variables were
named `SUI`. Now the class name is `RegionInfo`, so this renames `SUI`
to `RI`, matching the class name.
llvm-svn: 356861
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
on DAG combine.
An i16 bswap can be implemented with an i16 rotate by 8. We previously emitted
a shift and OR sequence that DAG combine should be able to turn back into
rotate. But we might as well go there directly. If rotate isn't legal,
LegalizeDAG should further legalize it to either the opposite rotate, or the
shift and OR pattern.
I don't know of any way to get the existing DAG combine reliance to fail. So
I don't know any way to add new tests for this that wouldn't have worked
previously.
llvm-svn: 356860
|
| |
|
|
|
|
|
|
| |
Just enable this for AVX for now as SSE41 introduces extra register moves for the PMOVZX(PSHUFD(V)) -> UNPCKH(V,0) pattern (but otherwise helps reduce port5 usage on Intel targets).
Only AVX support is required for PR40685 as the issue is due to 8i8->8i32 zext shuffle leftovers.
llvm-svn: 356858
|
| |
|
|
|
|
|
| |
This is extracted from D59696 as suggested in the review. It is
preparation for making the DominatorTree a member variable.
llvm-svn: 356857
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is yet another step towards solving PR14613:
https://bugs.llvm.org/show_bug.cgi?id=14613
uaddsat X, Y --> (X >u (X + Y)) ? -1 : X + Y
usubsat X, Y --> (X >u Y) ? X - Y : 0
We can't count on a sane vector ISA, so override the default (umin/umax)
expansion of unsigned add/sub saturate in cases where we do not have umin/umax.
Differential Revision: https://reviews.llvm.org/D59006
llvm-svn: 356855
|
| |
|
|
|
|
| |
Remove the I.getOperand() calls from inside shouldReorderOperands - reorderInputsAccordingToOpcode should handle the creation of the operand lists and shouldReorderOperands should just check to see whether the i'th element should be commuted.
llvm-svn: 356854
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds ConstantRange::getFull(BitWidth) and
ConstantRange::getEmpty(BitWidth) named constructors as more readable
alternatives to the current ConstantRange(BitWidth, /* full */ false)
and similar. Additionally private getFull() and getEmpty() member
functions are added which return a full/empty range with the same bit
width -- these are commonly needed inside ConstantRange.cpp.
The IsFullSet argument in the ConstantRange(BitWidth, IsFullSet)
constructor is now mandatory for the few usages that still make use of it.
Differential Revision: https://reviews.llvm.org/D59716
llvm-svn: 356852
|
| |
|
|
| |
llvm-svn: 356841
|
| |
|
|
| |
llvm-svn: 356840
|
| |
|
|
| |
llvm-svn: 356838
|
| |
|
|
| |
llvm-svn: 356836
|
| |
|
|
|
|
| |
directly. NFCI.
llvm-svn: 356832
|
| |
|
|
|
|
|
| |
Using an unsigned range to stay NFC, but a signed range would really
be more useful here.
llvm-svn: 356831
|
| |
|
|
| |
llvm-svn: 356830
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[Symbolizer] Add getModuleSectionIndexForAddress() helper routine
The https://reviews.llvm.org/D58194 patch changed symbolizer interface.
Particularily it requires not only Address but SectionIndex also.
Note object::SectionedAddress parameter:
Expected<DILineInfo> symbolizeCode(const std::string &ModuleName,
object::SectionedAddress ModuleOffset,
StringRef DWPName = "");
There are callers of symbolizer which do not know particular section index.
That patch creates getModuleSectionIndexForAddress() routine which
will detect section index for the specified address. Thus if caller
set ModuleOffset.SectionIndex into object::SectionedAddress::UndefSection
state then symbolizer would detect section index using
getModuleSectionIndexForAddress routine.
Differential Revision: https://reviews.llvm.org/D58848
llvm-svn: 356829
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As a followup to newpm -time-passes fix (D59366), now adding a similar
functionality to legacy time-passes.
Enhancing llvm::reportAndResetTimings to accept an optional stream
for reporting output. By default it still reports into the stream created
by CreateInfoOutputFile (-info-output-file).
Also fixing to actually reset after printing as declared.
Reviewed By: philip.pfaffe
Differential Revision: https://reviews.llvm.org/D59416
llvm-svn: 356824
|
| |
|
|
|
|
| |
Try using a move constructor instead.
llvm-svn: 356823
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add basic infrastructure for reading and writting TBD files (version 1 - 3).
The TextAPI library is not used by anything yet (besides the unit tests). Tool
support will be added in a separate commit.
The TBD format is currently documented in the implementation file (TextStub.cpp).
https://reviews.llvm.org/D53945
Update: This contains changes to fix issues discovered by the bots:
- add parentheses to silence warnings.
- rename variables
- use PlatformType from BinaryFormat
- Trying if switching from a vector to an array will appeas the bots.
- Replace the tuple with a struct to work around an explicit constructor bug.
- This fixes an issue where we were leaking the YAML document if there was a
parsing error.
Updated the license information in all files.
llvm-svn: 356820
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
buildTree() and later in vectorizeTree().
This is a refactoring patch that removes the redundancy of performing operand reordering twice, once in buildTree() and later in vectorizeTree().
To achieve this we need to keep track of the operands within the TreeEntry struct while building the tree, and later in vectorizeTree() we are just accessing them from the TreeEntry in the right order.
This patch is the first in a series of patches that will allow for better operand reordering across chains of instructions (e.g., a chain of ADDs), as presented here: https://www.youtube.com/watch?v=gIEn34LvyNo
Patch by: @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D59059
llvm-svn: 356814
|
| |
|
|
|
|
| |
of range C1. NFCI.
llvm-svn: 356810
|
| |
|
|
|
|
|
|
|
|
|
|
| |
In r322972/r323136, the iteration here was changed to catch cases at the
beginning of a basic block... but we accidentally deleted an important
safety check. Restore that check to the way it was.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41116
Differential Revision: https://reviews.llvm.org/D59680
llvm-svn: 356809
|
| |
|
|
|
|
|
|
|
|
|
|
| |
possible if popcnt instruction is not available
On 32-bit targets without popcnt, we currently expand 64-bit popcnt to sequences of arithmetic and logic ops for each 32-bit half and then add the 32 bit halves together. If we have xmm registers we can use use those to implement the operation instead. This results in less instructions then doing two separate 32-bit popcnt sequences.
This mitigates some of PR41151 for the i64 on i686 case when we have SSE2.
Differential Revision: https://reviews.llvm.org/D59662
llvm-svn: 356808
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used a lock cmpxchg8b to do i64 atomic loads. But if we have SSE2 we can do better and use a plain movq to do the load instead.
I tried to just use an f64 atomic load and add isel patterns to MOVSD(which the domain fixing pass can turn to MOVQ), but the atomic_load SDNode in TargetSelectionDAG.td requires the type to be integer.
So I've emitted VZEXT_LOAD instead which should be selected by isel to a MOVQ. Hopefully we don't need a specific atomic flavor of this. I kept the memory operand from the original AtomicSDNode. I wasn't sure if I might need to set the MOVolatile flag?
I've left some FIXMEs for improvements we can do without SSE2.
Differential Revision: https://reviews.llvm.org/D59679
llvm-svn: 356807
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Between building the pair map and querying it there are a few places that
erase and create Values. It's rare but the address of these newly created
Values is occasionally the same as a just-erased Value that we already
have in the pair map. These coincidences should be accounted for to avoid
non-determinism.
Thanks to Roman Tereshin for the test case.
Reviewers: rtereshin, bogner
Reviewed By: rtereshin
Subscribers: mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59401
llvm-svn: 356803
|